2023 Vol. 43, No. 3
Article Contents

SHI Xuefa, LI Jingrui, QIAO Shuqing, LIU Shengfa, WAN Shiming, YANG Shouye. Research progress of the Tibetan Plateau - Bay of Bengal “source-sink” system since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 14-25. doi: 10.16562/j.cnki.0256-1492.2023061201
Citation: SHI Xuefa, LI Jingrui, QIAO Shuqing, LIU Shengfa, WAN Shiming, YANG Shouye. Research progress of the Tibetan Plateau - Bay of Bengal “source-sink” system since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 14-25. doi: 10.16562/j.cnki.0256-1492.2023061201

Research progress of the Tibetan Plateau - Bay of Bengal “source-sink” system since the Last Glacial Maximum

  • In the last two decades, significant approach has been made in the study on the Tibetan Plateau (TP) - Bay of Bengal (BoB) “source-sink” system since the Last Glacial Maximum (LGM). To track the research frontiers and provide new ideas on the source-sink process of the Northeast Indian Ocean under the guidance of the thought of the earth system science, we summarized the latest progress in several aspects such as weathering and erosion, sediment provenance, sedimentary patterns, and source-sink system responses, and pointed out the breakthrough directions in the future. The physical erosion process in the Ganges-Brahmaputra (G-B) basin is primarily influenced by monsoon climate change, while the chemical weathering process exhibits a complex relationship with the monsoon climate. Temperature, precipitation, vegetation, and glaciers may all play significant roles in controlling these processes in specific times. The sediments in the BoB are mostly weathered products transported by surrounding rivers, particularly from the Ganges-Brahmaputra (G-B) River that transports great amounts of materials from the TP, and partially from Myanmar and Indian Peninsula. The TP has consistently contributed >70% terrigenous materials to the BoB with little changes since the LGM. However, contributions from each provenance varied significantly on a millennial scale. The BoB shelf developed typical storm-controlled delta-shelf deposits. As two most-significant regional transport driving forces, the bottom turbidity current and surface circulation had a crucial impact on the composition and distribution of deep-sea fan sediments. In general, the evolution of the TP - BoB “source-sink” system since the LGM is mainly controlled by the Indian Summer Monsoon (ISM) and sea level changes. In the future, more attention shall be paid to develop the joint land-sea long-term observation of modern deposition processes, and focus on the accurate interpretation of environmental signals in sedimentary records and response mechanism of weathering processes to monsoon climate change. With numerical simulation technology and marine big data, the evolution and environmental impacts of TP - BoB “source-sink” system under the fast global changes deserve more investigations. Meanwhile, comparative studies on other typical source-sink systems in the continental margins of the world shall be strengthened.

  • 加载中
  • [1] 石学法. 大洋钻探与中国边缘海沉积地质学[J]. 海洋科学, 1996, 20(3):47-50

    Google Scholar

    SHI Xuefa. Ocean drilling and sedimentary geology of China marginal seas [J]. Marine Sciences, 1996, 20(3): 47-50.

    Google Scholar

    [2] Kuehl S A, Yang S Y, Yu F K, et al. Asia’s mega rivers: Common source, diverse fates [J]. Eos, 2020, 101: 143936.

    Google Scholar

    [3] 石学法, 乔淑卿, 杨守业, 等. 亚洲大陆边缘沉积学研究进展(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 40(2):319-336

    Google Scholar

    SHI Xuefa, QIAO Shuqing, YANG Shouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020) [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319-336.

    Google Scholar

    [4] 方念乔, 陈学方, 胡超涌, 等. 东北印度洋深海记录基本特征及其对青藏高原隆升的响应[J]. 第四纪研究, 2001, 21(6):490-499 doi: 10.3321/j.issn:1001-7410.2001.06.004

    CrossRef Google Scholar

    FANG Nianqiao, CHEN Xuefang, HU Chaoyong, et al. Deep sea sedimentary records in the northeastern Indian Ocean and their response to the uplift of the Qinghai-Xizang Plateau [J]. Quaternary Sciences, 2001, 21(6): 490-499. doi: 10.3321/j.issn:1001-7410.2001.06.004

    CrossRef Google Scholar

    [5] Curray J R. Sediment volume and mass beneath the Bay of Bengal [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 371-383. doi: 10.1016/0012-821X(94)90227-5

    CrossRef Google Scholar

    [6] France-Lanord C, Derry L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion [J]. Nature, 1997, 390(6655): 65-67. doi: 10.1038/36324

    CrossRef Google Scholar

    [7] Weber M E, Reilly B T. Hemipelagic and turbiditic deposits constrain lower Bengal Fan depositional history through Pleistocene climate, monsoon, and sea level transitions [J]. Quaternary Science Review, 2018, 199: 159-173. doi: 10.1016/j.quascirev.2018.09.027

    CrossRef Google Scholar

    [8] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359(6391): 117-122. doi: 10.1038/359117a0

    CrossRef Google Scholar

    [9] Bufe A, Hovius N, Emberson R, et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion [J]. Nature Geoscience, 2021, 14(4): 211-216. doi: 10.1038/s41561-021-00714-3

    CrossRef Google Scholar

    [10] Leland J, Reid M R, Burbank D W, et al. Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths [J]. Earth and Planetary Science Letters, 1998, 154(1-4): 93-107. doi: 10.1016/S0012-821X(97)00171-4

    CrossRef Google Scholar

    [11] Galy A, France-Lanord C. Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes [J]. Geology, 2001, 29(1): 23-26. doi: 10.1130/0091-7613(2001)029<0023:HERITH>2.0.CO;2

    CrossRef Google Scholar

    [12] Singh S K. Spatial variability in erosion in the Brahmaputra basin: Causes and impacts [J]. Current Science, 2006, 90(9): 1272-1276.

    Google Scholar

    [13] Singh S K, Rai S K, Krishnaswami S. Sr and Nd isotopes in river sediments from the Ganga Basin: Sediment provenance and spatial variability in physical erosion [J]. Journal of Geophysical Research:Earth Surface, 2008, 113(F3): F03006.

    Google Scholar

    [14] Kumar P, Sanwal J, Dimri A P, et al. Contribution of diverse monsoon precipitation over Central and Northern India during mid to Late Holocene [J]. Quaternary International, 2019, 507: 217-223. doi: 10.1016/j.quaint.2018.10.003

    CrossRef Google Scholar

    [15] Stewart R J, Hallet B, Zeitler P K, et al. Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya [J]. Geology, 2008, 36(9): 711-714. doi: 10.1130/G24890A.1

    CrossRef Google Scholar

    [16] Lupker M, France-Lanord C, Galy V, et al. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum [J]. Earth and Planetary Science Letters, 2013, 365: 243-252. doi: 10.1016/j.jpgl.2013.01.038

    CrossRef Google Scholar

    [17] Huyghe P, Guilbaud R, Bernet M, et al. Significance of the clay mineral distribution in fluvial sediments of the Neogene to Recent Himalayan Foreland Basin (west-central Nepal) [J]. Basin Research, 2011, 23(3): 332-345. doi: 10.1111/j.1365-2117.2010.00485.x

    CrossRef Google Scholar

    [18] Bohlin M S, Bickle M J. The reactive transport of Li as a monitor of weathering processes in kinetically limited weathering regimes [J]. Earth and Planetary Science Letters, 2019, 511: 233-243. doi: 10.1016/j.jpgl.2019.01.034

    CrossRef Google Scholar

    [19] Granet M, Chabaux F, Stille P, et al. Time-scales of sedimentary transfer and weathering processes from U-series nuclides: clues from the Himalayan rivers [J]. Earth and Planetary Science Letters, 2007, 261(3-4): 389-406. doi: 10.1016/j.jpgl.2007.07.012

    CrossRef Google Scholar

    [20] Granet M, Chabaux F, Stille P, et al. U-series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: the case of the Himalayan rivers [J]. Geochimica et Cosmochimica Acta, 2010, 74(10): 2851-2865. doi: 10.1016/j.gca.2010.02.016

    CrossRef Google Scholar

    [21] Heroy D C, Kuehl S A, Goodbred Jr S L. Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and Late Quaternary climate change [J]. Sedimentary Geology, 2003, 155(3-4): 343-359. doi: 10.1016/S0037-0738(02)00186-0

    CrossRef Google Scholar

    [22] Khan H R, Liu J G, Liu S F, et al. Clay mineral compositions in surface sediments of the Ganges-Brahmaputra-Meghna river system of Bengal Basin, Bangladesh [J]. Marine Geology, 2019, 412: 27-36. doi: 10.1016/j.margeo.2019.03.007

    CrossRef Google Scholar

    [23] Lupker M, France-Lanord C, Galy V, et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin) [J]. Geochimica et Cosmochimica Acta, 2012, 84: 410-432. doi: 10.1016/j.gca.2012.02.001

    CrossRef Google Scholar

    [24] Ayers J C, Patton B, Dietrich M. Preliminary evidence of transport-limited chemical weathering and element immobility in the Ganges tidal delta plain of Bangladesh [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(8): e2020GC009029.

    Google Scholar

    [25] Moon S, Huh Y, Qin J H, et al. Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors [J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1411-1430. doi: 10.1016/j.gca.2006.12.004

    CrossRef Google Scholar

    [26] Clift P D, Giosan L, Blusztajn J, et al. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon [J]. Geology, 2008, 36(1): 79-82. doi: 10.1130/G24315A.1

    CrossRef Google Scholar

    [27] Rahaman W, Singh S K, Sinha R, et al. Climate control on erosion distribution over the Himalaya during the past ~100 ka [J]. Geology, 2009, 37(6): 559-562. doi: 10.1130/G25425A.1

    CrossRef Google Scholar

    [28] Yu Z J, Colin C, Bassinot F, et al. Climate-driven weathering shifts between highlands and floodplains [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(7): e2020GC008936.

    Google Scholar

    [29] Duplessy J C. Glacial to interglacial contrasts in the northern Indian Ocean [J]. Nature, 1982, 295(5849): 494-498. doi: 10.1038/295494a0

    CrossRef Google Scholar

    [30] Sarkar A, Ramesh R, Bhattacharya S K, et al. Oxygen isotope evidence for a stronger winter monsoon current during the last glaciation [J]. Nature, 1990, 343(6258): 549-551. doi: 10.1038/343549a0

    CrossRef Google Scholar

    [31] Tiwari M, Ramesh R, Somayajulu B L K, et al. Early deglacial (~19-17 ka) strengthening of the northeast monsoon [J]. Geophysical Research Letters, 2005, 32(19): L19712.

    Google Scholar

    [32] Caley T, Malaizé B, Zaragosi S, et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon [J]. Earth and Planetary Science Letters, 2011, 308(3-4): 433-444. doi: 10.1016/j.jpgl.2011.06.019

    CrossRef Google Scholar

    [33] Liu S F, Ye W X, Chen M T, et al. Millennial-scale variability of Indian summer monsoon during the last 42 kyr: Evidence based on foraminiferal Mg/Ca and oxygen isotope records from the central Bay of Bengal [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 562: 110112.

    Google Scholar

    [34] Weldeab S, Rühlemann C, Bookhagen B, et al. Enhanced himalayan glacial melting during YD and H1 recorded in the northern bay of Bengal [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(5): 2449-2461.

    Google Scholar

    [35] Goodbred Jr S L. Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade [J]. Sedimentary Geology, 2003, 162(1-2): 83-104. doi: 10.1016/S0037-0738(03)00217-3

    CrossRef Google Scholar

    [36] Ahmad S M, Babu G A, Padmakumari V M, et al. Sr, Nd isotopic evidence of terrigenous flux variations in the Bay of Bengal: Implications of monsoons during the last ~34, 000 years [J]. Geophysical Research Letters, 2005, 32(22): L22711.

    Google Scholar

    [37] Panda D K, Kumar A, Mohanty S. Recent trends in sediment load of the tropical (Peninsular) river basins of India [J]. Global and Planetary Change, 2011, 75(3-4): 108-118. doi: 10.1016/j.gloplacha.2010.10.012

    CrossRef Google Scholar

    [38] Li J R, Liu S F, Shi X F, et al. Sedimentary responses to the sea level and Indian summer monsoon changes in the central Bay of Bengal since 40 ka [J]. Marine Geology, 2019, 415: 105947. doi: 10.1016/j.margeo.2019.05.006

    CrossRef Google Scholar

    [39] Ye W X, Liu S F, Fan D J, et al. Evolution of sediment provenances and transport processes in the central Bay of Bengal since the Last Glacial Maximum [J]. Quaternary International, 2022, 629: 27-35. doi: 10.1016/j.quaint.2020.12.007

    CrossRef Google Scholar

    [40] Ye W X, Liu S F, Li J R, et al. Sedimentary response to climate change in the central bay of Bengal since the last glacial maximum[J]. Lithosphere, 2022, 2022(Special 9): 3769093.

    Google Scholar

    [41] Yu Z J, Colin C, Wilson D J, et al. Millennial variability in intermediate ocean circulation and Indian monsoonal weathering inputs during the last deglaciation and Holocene [J]. Geophysical Research Letters, 2022, 49(21): e2022GL100003.

    Google Scholar

    [42] Bookhagen B, Thiede R C, Strecker M R. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya [J]. Geology, 2005, 33(2): 149-152. doi: 10.1130/G20982.1

    CrossRef Google Scholar

    [43] Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature [J]. Journal of Geophysical Research:Oceans, 1981, 86(C10): 9776-9782. doi: 10.1029/JC086iC10p09776

    CrossRef Google Scholar

    [44] Dosseto A, Vigier N, Joannes-Boyau R, et al. Rapid response of silicate weathering rates to climate change in the Himalaya [J]. Geochemical Perspectives Letters, 2015, 1(1): 10-19.

    Google Scholar

    [45] Richards B W, Owen L A, Rhodes E J. Timing of late quaternary glaciations in the Himalayas of northern Pakistan [J]. Journal of Quaternary Science, 2000, 15(3): 283-297. doi: 10.1002/(SICI)1099-1417(200003)15:3<283::AID-JQS525>3.0.CO;2-X

    CrossRef Google Scholar

    [46] Owen L A, Finke R C, Caffee M W. A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum [J]. Quaternary Science Reviews, 2002, 21(1-3): 147-157. doi: 10.1016/S0277-3791(01)00104-4

    CrossRef Google Scholar

    [47] Owen L A, Finkel R C, Barnard P L, et al. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating [J]. Quaternary Science Reviews, 2005, 24(12-13): 1391-1411. doi: 10.1016/j.quascirev.2004.10.014

    CrossRef Google Scholar

    [48] Owen L A, Dortch J M. Nature and timing of Quaternary glaciation in the Himalayan-Tibetan orogen [J]. Quaternary Science Reviews, 2014, 88: 14-54. doi: 10.1016/j.quascirev.2013.11.016

    CrossRef Google Scholar

    [49] Hu G, Yi C L, Zhang J F, et al. Extensive glacial advances during the Last Glacial Maximum near the eastern Himalayan syntaxis [J]. Quaternary International, 2017, 443: 1-12.

    Google Scholar

    [50] Hu G, Yi C L, Liu J H, et al. Glacial advances and stability of the moraine dam on Mount Namcha Barwa since the Last Glacial Maximum, eastern Himalayan syntaxis [J]. Geomorphology, 2020, 365: 107246. doi: 10.1016/j.geomorph.2020.107246

    CrossRef Google Scholar

    [51] Gabet E J, Burbank D W, Pratt-Sitaula B, et al. Modern erosion rates in the High Himalayas of Nepal [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 482-494. doi: 10.1016/j.jpgl.2007.11.059

    CrossRef Google Scholar

    [52] Galy V, Francois L, France-Lanord C, et al. C4 plants decline in the Himalayan basin since the Last Glacial Maximum [J]. Quaternary Science Reviews, 2008, 27(13-14): 1396-1409. doi: 10.1016/j.quascirev.2008.04.005

    CrossRef Google Scholar

    [53] Tripathy G R, Singh S K, Ramaswamy V. Major and trace element geochemistry of Bay of Bengal sediments: Implications to provenances and their controlling factors [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 397: 20-30. doi: 10.1016/j.palaeo.2013.04.012

    CrossRef Google Scholar

    [54] Li J R, Liu S F, Feng X L, et al. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: implications for provenance [J]. Acta Oceanologica Sinica, 2017, 36(3): 82-90. doi: 10.1007/s13131-017-1041-z

    CrossRef Google Scholar

    [55] Li J R, Liu S F, Shi X F, et al. Distributions of clay minerals in surface sediments of the middle Bay of Bengal: Source and transport pattern [J]. Continental Shelf Research, 2017, 145: 59-67. doi: 10.1016/j.csr.2017.06.017

    CrossRef Google Scholar

    [56] Li J R, Liu S F, Shi X F, et al. Clay minerals and Sr-Nd isotopic composition of the Bay of Bengal sediments: Implications for sediment provenance and climate control since 40 ka [J]. Quaternary International, 2018, 493: 50-58. doi: 10.1016/j.quaint.2018.06.044

    CrossRef Google Scholar

    [57] Li J R, Liu S F, Shi X F, et al. Provenance of terrigenous sediments in the central Bay of Bengal and its relationship to climate changes since 25 ka [J]. Progress in Earth and Planetary Science, 2020, 7(1): 16. doi: 10.1186/s40645-020-00328-0

    CrossRef Google Scholar

    [58] Li J R, Shi X F, Liu S F, et al. Frequency of deep-sea turbidity as an important component of the response of a source-to-sink system to climate: a case study in the eastern middle Bengal Fan since 32 ka [J]. Marine Geology, 2021, 441: 106603. doi: 10.1016/j.margeo.2021.106603

    CrossRef Google Scholar

    [59] Sun X Q, Liu S F, Li J R, et al. Major and trace element compositions of surface sediments from the lower Bengal Fan: Implications for provenance discrimination and sedimentary environment [J]. Journal of Asian Earth Sciences, 2019, 184: 104000. doi: 10.1016/j.jseaes.2019.104000

    CrossRef Google Scholar

    [60] Sun X Q, Liu S F, Fang X S, et al. Clay minerals of surface sediments from the lower Bengal fan: implications for provenance identification and transport processes [J]. Geological Journal, 2020, 55(9): 6038-6048. doi: 10.1002/gj.3786

    CrossRef Google Scholar

    [61] Liu S F, Ye W X, Zhang H, et al. Sediment provenances shift driven by sea level and Indian monsoon in the southern Bay of Bengal since the last glacial maximum [J]. Frontiers in Marine Science, 2023, 10: 1106663. doi: 10.3389/fmars.2023.1106663

    CrossRef Google Scholar

    [62] Xue P F, Chang L, Wang S S, et al. Magnetic mineral tracing of sediment provenance in the central Bengal Fan [J]. Marine Geology, 2019, 415: 105955. doi: 10.1016/j.margeo.2019.05.014

    CrossRef Google Scholar

    [63] Colin C, Turpin L, Bertaux J, et al. Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles [J]. Earth and Planetary Science Letters, 1999, 171(4): 647-660. doi: 10.1016/S0012-821X(99)00184-3

    CrossRef Google Scholar

    [64] Joussain R, Colin C, Liu Z F, et al. Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacial-interglacial cycle [J]. Quaternary Science Reviews, 2016, 148: 1-16. doi: 10.1016/j.quascirev.2016.06.016

    CrossRef Google Scholar

    [65] Song Z H, Wan S M, Colin C, et al. Paleoenvironmental evolution of South Asia and its link to Himalayan uplift and climatic change since the late Eocene [J]. Global and Planetary Change, 2021, 200: 103459. doi: 10.1016/j.gloplacha.2021.103459

    CrossRef Google Scholar

    [66] Prajith A, Tyagi A, Kurian P J. Changing sediment sources in the Bay of Bengal: evidence of summer monsoon intensification and ice-melt over Himalaya during the late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 309-318. doi: 10.1016/j.palaeo.2018.08.016

    CrossRef Google Scholar

    [67] Singh M, Singh I B, Müller G. Sediment characteristics and transportation dynamics of the Ganga River [J]. Geomorphology, 2007, 86(1-2): 144-175. doi: 10.1016/j.geomorph.2006.08.011

    CrossRef Google Scholar

    [68] Kuehl S A, Hariu T M, Moore W S. Shelf sedimentation off the Ganges-Brahmaputra River system: evidence for sediment bypassing to the Bengal Fan [J]. Geology, 1989, 17(12): 1132-1135. doi: 10.1130/0091-7613(1989)017<1132:SSOTGB>2.3.CO;2

    CrossRef Google Scholar

    [69] Goodbred Jr S L, Saito Y. Tide-Dominated Deltas[M]//Davis R A, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012, 129-149.

    Google Scholar

    [70] Michels K H, Kudrass H R, Hübscher C, et al. The submarine delta of the Ganges-Brahmaputra: cyclone-dominated sedimentation patterns [J]. Marine Geology, 1998, 149(1-4): 133-154. doi: 10.1016/S0025-3227(98)00021-8

    CrossRef Google Scholar

    [71] Brill D, Seeger K, Pint A, et al. Modern and historical tropical cyclone and tsunami deposits at the coast of Myanmar: implications for their identification and preservation in the geological record [J]. Sedimentology, 2020, 67(3): 1431-1459. doi: 10.1111/sed.12586

    CrossRef Google Scholar

    [72] Rogers K G, Goodbred Jr S L, Khan S R. Shelf-to-canyon connections: transport-related morphology and mass balance at the shallow-headed, rapidly aggrading swatch of no ground (Bay of Bengal) [J]. Marine Geology, 2015, 369: 288-299. doi: 10.1016/j.margeo.2015.09.011

    CrossRef Google Scholar

    [73] Rogers K G, Goodbred Jr S L. Mass failures associated with the passage of a large tropical cyclone over the Swatch of No Ground submarine canyon (Bay of Bengal) [J]. Geology, 2010, 38(11): 1051-1054. doi: 10.1130/G31181.1

    CrossRef Google Scholar

    [74] Hübscher C, Breitzke M, Michels K, et al. Late Quaternary seismic stratigraphy of the eastern Bengal Shelf [J]. Marine Geophysical Researches, 1998, 20(1): 57-71. doi: 10.1023/A:1004375908399

    CrossRef Google Scholar

    [75] Kudrass H R, Michels K H, Wiedicke M, et al. Cyclones and tides as feeders of a submarine canyon off Bangladesh [J]. Geology, 1998, 26(8): 715-718. doi: 10.1130/0091-7613(1998)026<0715:CATAFO>2.3.CO;2

    CrossRef Google Scholar

    [76] Kudrass H R, Machalett B, Palamenghi L, et al. Sediment transport by tropical cyclones recorded in a submarine canyon off Bangladesh [J]. Geo-Marine Letters, 2018, 38(6): 481-496. doi: 10.1007/s00367-018-0550-x

    CrossRef Google Scholar

    [77] Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes [J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223. doi: 10.1016/S0264-8172(03)00035-7

    CrossRef Google Scholar

    [78] Kuehl S A, Levy B M, Moore W S, et al. Subaqueous delta of the Ganges-Brahmaputra River system [J]. Marine Geology, 1997, 144(1-3): 81-96. doi: 10.1016/S0025-3227(97)00075-3

    CrossRef Google Scholar

    [79] Giosan L, Bhattacharya J. River Deltas-Concepts, Models, and Examples[M]//Kuehl S A, Allison M A, Goodbred S L, et al. The Ganges–Brahmaputra Delta. Tulsa: SEPM Special Publication, 2005: 413-434.

    Google Scholar

    [80] Rudra K. Changing river courses in the western part of the Ganga–Brahmaputra delta [J]. Geomorphology, 2014, 227: 87-100. doi: 10.1016/j.geomorph.2014.05.013

    CrossRef Google Scholar

    [81] Sarkar A, Sengupta S, McArthur J M, et al. Evolution of Ganges–Brahmaputra western delta plain: Clues from sedimentology and carbon isotopes [J]. Quaternary Science Reviews, 2009, 28(25-26): 2564-2581. doi: 10.1016/j.quascirev.2009.05.016

    CrossRef Google Scholar

    [82] Wilson C A, Goodbred Jr S L. Construction and maintenance of the Ganges-Brahmaputra-Meghna delta: linking process, morphology, and stratigraphy [J]. Annual Review of Marine Science, 2015, 7: 67-88. doi: 10.1146/annurev-marine-010213-135032

    CrossRef Google Scholar

    [83] Fournier L, Fauquembergue K, Zaragosi S, et al. The Bengal fan: External controls on the Holocene Active Channel turbidite activity [J]. The Holocene, 2016, 27(6): 900-913.

    Google Scholar

    [84] Fauquembergue K, Fournier L, Zaragosi S, et al. Factors controlling frequency of turbidites in the Bengal fan during the last 248 kyr cal BP: Clues from a presently inactive channel [J]. Marine Geology, 2019, 415: 105965. doi: 10.1016/j.margeo.2019.105965

    CrossRef Google Scholar

    [85] Weber M E, Wiedicke M H, Kudrass H R, et al. Active growth of the Bengal Fan during sea-level rise and highstand [J]. Geology, 1997, 25(4): 315-318. doi: 10.1130/0091-7613(1997)025<0315:AGOTBF>2.3.CO;2

    CrossRef Google Scholar

    [86] Chauhan O S, Vogelsang E. Climate induced changes in the circulation and dispersal patterns of the fluvial sources during late Quaternary in the middle Bengal Fan [J]. Journal of Earth System Science, 2006, 115(3): 379-386. doi: 10.1007/BF02702050

    CrossRef Google Scholar

    [87] Yang S Y, Bi L, Li C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[M]//Clift P D, Harff J, Wu J, et al. River-Dominated Shelf Sediments of East Asian Seas. London: Geological Society, 2016: 137.

    Google Scholar

    [88] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean[M]. New York: Cambridge University Press, 2001: 296-297.

    Google Scholar

    [89] Cullen J L. Microfossil evidence for changing salinity patterns in the Bay of Bengal over the last 20000 years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 35: 315-356. doi: 10.1016/0031-0182(81)90101-2

    CrossRef Google Scholar

    [90] Williams M A J, Clarke M F. Late Quaternary environments in north-central India [J]. Nature, 1984, 308(5960): 633-635. doi: 10.1038/308633a0

    CrossRef Google Scholar

    [91] Van Campo E. Monsoon fluctuations in two 20, 000-yr B. P. oxygen-isotope/pollen records off southwest India [J]. Quaternary Research, 1986, 26(3): 376-388. doi: 10.1016/0033-5894(86)90097-9

    CrossRef Google Scholar

    [92] Prell W L, Kutzbach J E. Monsoon variability over the past 150, 000 years [J]. Journal of Geophysical Research:Atmospheres, 1987, 92(D7): 8411-8425. doi: 10.1029/JD092iD07p08411

    CrossRef Google Scholar

    [93] Gasse F, Arnold M, Fontes J C, et al. A 13, 000-year climate record from western Tibet [J]. Nature, 1991, 353(6346): 742-745. doi: 10.1038/353742a0

    CrossRef Google Scholar

    [94] Singh I B. Geological evolution of Ganga Plain: an overview [J]. Journal of the Palaeontological Society of India, 1996, 41: 99-137.

    Google Scholar

    [95] Hübscher C, Spieβ V, Breitzke M, et al. The youngest channel-levee system of the Bengal Fan: results from digital sediment echosounder data [J]. Marine Geology, 1997, 141(1-4): 125-145. doi: 10.1016/S0025-3227(97)00066-2

    CrossRef Google Scholar

    [96] Goodbred Jr S L, Kuehl S A. Holocene and modern sediment budgets for the Ganges-Brahmaputra river system: Evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters [J]. Geology, 1999, 27(6): 559-562. doi: 10.1130/0091-7613(1999)027<0559:HAMSBF>2.3.CO;2

    CrossRef Google Scholar

    [97] Goodbred Jr S L, Kuehl S A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta [J]. Sedimentary Geology, 2000, 133(3-4): 227-248. doi: 10.1016/S0037-0738(00)00041-5

    CrossRef Google Scholar

    [98] Goodbred Jr S L, Kuehl S A. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon [J]. Geology, 2000, 28(12): 1083-1086. doi: 10.1130/0091-7613(2000)28<1083:EGSDDS>2.0.CO;2

    CrossRef Google Scholar

    [99] Monecke K, Winsemann J, Hanisch J. Climatic response of quaternary alluvial deposits in the upper Kali Gandaki valley (West Nepal) [J]. Global and Planetary Change, 2001, 28(1-4): 293-302. doi: 10.1016/S0921-8181(00)00080-1

    CrossRef Google Scholar

    [100] Shukla U K, Singh I B, Sharma M, et al. A model of alluvial megafan sedimentation: Ganga Megafan [J]. Sedimentary Geology, 2001, 144(3-4): 243-262. doi: 10.1016/S0037-0738(01)00060-4

    CrossRef Google Scholar

    [101] Pratt B, Burbank D W, Heimsath A, et al. Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalaya [J]. Geology, 2002, 30(10): 911-914. doi: 10.1130/0091-7613(2002)030<0911:IADEHS>2.0.CO;2

    CrossRef Google Scholar

    [102] Finkel R C, Owen L A, Barnard P L, et al. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchroneity throughout the Himalaya [J]. Geology, 2003, 31(6): 561-564. doi: 10.1130/0091-7613(2003)031<0561:BDOMEM>2.0.CO;2

    CrossRef Google Scholar

    [103] Weber M E, Wiedicke-Hombach M, Kudrass H R, et al. Bengal Fan sediment transport activity and response to climate forcing inferred from sediment physical properties [J]. Sedimentary Geology, 2003, 155(3-4): 361-381. doi: 10.1016/S0037-0738(02)00187-2

    CrossRef Google Scholar

    [104] Wiedicke M, Kudrass H R, Hübscher C. Oolitic beach barriers of the last glacial sea-level lowstand at the outer Bengal shelf [J]. Marine Geology, 1999, 157(1-2): 7-18. doi: 10.1016/S0025-3227(98)00162-5

    CrossRef Google Scholar

    [105] Liu J G, He W, Cao L, et al. Staged fine-grained sediment supply from the Himalayas to the Bengal Fan in response to climate change over the past 50, 000 years [J]. Quaternary Science Reviews, 2019, 212: 164-177. doi: 10.1016/j.quascirev.2019.04.008

    CrossRef Google Scholar

    [106] Raff J L, Goodbred Jr S L, Pickering J L, et al. Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts [J]. Nature Communications, 2023, 14(1): 2429. doi: 10.1038/s41467-023-38057-9

    CrossRef Google Scholar

    [107] 龚承林, 齐昆, 徐杰, 等. 深水源-汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报, 2021, 39(1):231-252

    Google Scholar

    GONG Chenglin, QI Kun, XU Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes [J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1698) PDF downloads(127) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint