2023 Vol. 43, No. 3
Article Contents

GAO Shu. Revisiting the concept of river delta sedimentary systems[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 1-13. doi: 10.16562/j.cnki.0256-1492.2023042301
Citation: GAO Shu. Revisiting the concept of river delta sedimentary systems[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 1-13. doi: 10.16562/j.cnki.0256-1492.2023042301

Revisiting the concept of river delta sedimentary systems

  • This paper attempts to re-analyze the depositional system of river deltas from the perspective of sediment dynamics. According to the definition that "river deltas are concentrated deposits associated with the same river flowing into the sea", the traditional three-end-member classification diagram based on runoff, tides and waves does not seem to have covered all types of deltas. Coastal embayment morphology, shelf circulation and sea level changes are also important; they are related to the end-member forms of embayment filling delta, distal mud and shelf edge delta, respectively. Sediment gravity flow is also a factor that cannot be neglected for some stages of delta evolution. Hence, the above factors may be combined by an integrated modeling system to define a delta morphological spectrum, which is beneficial to the study on the process-product relationships. The relevant scientific issues that are worth exploring include: (1) any criteria to differentiate between the clinoforms of subaqueous delta and the distal mud, to be used in the analysis of deltaic deposits within the stratigraphic sequence, e.g., the classification of shelf edge deltas; (2) the completeness of the sedimentary record, in relation to the spatial and temporal distribution patterns of the various components of a delta system; and (3) the relationship between delta evolution (and its ultimate magnitude in particular) and sediment budgeting processes.

  • 加载中
  • [1] 何起祥. 中国海洋沉积地质学[M]. 北京: 海洋出版社, 2006: 1-503

    Google Scholar

    HE Qixiang. Marine Sedimentary Geology of China[M]. Beijing: China Ocean Press, 2006: 1-503.

    Google Scholar

    [2] Shepard F P. Criteria in modern sediments useful in recognizing ancient sedimentary environments[M]//Van Straaten L M J U. Deltaic and Shallow Marine Deposits: Proceedings of the 6th International Sedimentological Congress the Netherlands and Belgium. Amsterdam: Elsevier, 1964: 1-25.

    Google Scholar

    [3] Kuenen P H. Marine Geology[M]. New York: John Wiley and Sons, 1950: 1-568.

    Google Scholar

    [4] Laughton A S, Roberts D G. Morphology of the continental margin [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1978, 290(1366): 75-85.

    Google Scholar

    [5] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011: 1-384.

    Google Scholar

    [6] Mitchell J K, Soga K. Fundamentals of Soil Behavior[M]. 3rd ed. New York: John Wiley, 2005: 1-577.

    Google Scholar

    [7] Curray J R. Sediment volume and mass beneath the Bay of Bengal [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 371-383. doi: 10.1016/0012-821X(94)90227-5

    CrossRef Google Scholar

    [8] Jacobi R D. Sediment slides on the northwestern continental margin of Africa [J]. Marine Geology, 1976, 22(3): 157-173. doi: 10.1016/0025-3227(76)90045-1

    CrossRef Google Scholar

    [9] Petley D N. The continental shelf and continental slop[M]//Burt T P, Allison R J. Sediment Cascades: An Integrated Approach. Chichester: Wiley-Blackwell, 2010: 433-448.

    Google Scholar

    [10] Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes [J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223. doi: 10.1016/S0264-8172(03)00035-7

    CrossRef Google Scholar

    [11] Wetzel A. The transfer of river load to deep-sea fans: a quantitative approach [J]. AAPG Bulletin, 1993, 77(10): 1679-1692.

    Google Scholar

    [12] Allison M A. Geologic framework and environmental status of the Ganges-Brahmaputra delta [J]. Journal of Coastal Research, 1998, 14(3): 826-836.

    Google Scholar

    [13] Goodbred S L Jr, Kuehl S A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta [J]. Sedimentary Geology, 2000, 133(3-4): 227-248. doi: 10.1016/S0037-0738(00)00041-5

    CrossRef Google Scholar

    [14] Allison M A, Khan S R, Goodbred S L Jr, et al. Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain [J]. Sedimentary Geology, 2003, 155(3-4): 317-342. doi: 10.1016/S0037-0738(02)00185-9

    CrossRef Google Scholar

    [15] 李保华, 李从先, 沈焕庭. 冰后期长江三角洲沉积通量的初步研究[J]. 中国科学(D辑), 2002, 32(9):776-782 doi: 10.3321/j.issn:1006-9267.2002.09.009

    CrossRef Google Scholar

    LI Baohua, LI Congxian, SHEN Huanting. Preliminary study on sediment fluxes for the Yangtze River Delta during the late glacial period [J]. Science in China (Series D), 2002, 32(9): 776-782. doi: 10.3321/j.issn:1006-9267.2002.09.009

    CrossRef Google Scholar

    [16] Corbett D R, McKee B, Allison M. Nature of decadal-scale sediment accumulation on the western shelf of the Mississippi River delta [J]. Continental Shelf Research, 2006, 26(17-18): 2125-2140. doi: 10.1016/j.csr.2006.07.012

    CrossRef Google Scholar

    [17] Gao S, Wang D D, Yang Y, et al. Holocene sedimentary systems on a broad continental shelf with abundant river input: process–product relationships[M]//Clift P D, Harff J, Wu J, et al. River-Dominated Shelf Sediments of East Asian Seas. London: Geological Society of London, 2016: 231-268.

    Google Scholar

    [18] Ager D V. The Nature of the Stratigraphical Record[M]. 2nd ed. New York: Wiley, 1981: 122.

    Google Scholar

    [19] Allison M A, Nittrouer C A, Ogston A S, et al. Sedimentation and survival of the Mekong Delta: a case study of decreased sediment supply and accelerating rates of relative sea level rise [J]. Oceanography, 2017, 30(3): 98-109. doi: 10.5670/oceanog.2017.318

    CrossRef Google Scholar

    [20] 高抒. 沉积记录研究的现代过程视角[J]. 沉积学报, 2017, 35(5):918-925

    Google Scholar

    GAO Shu. Discover more information from sedimentary records: views based on contemporary earth surface dynamic processes [J]. Acta Sedimentologica Sinica, 2017, 35(5): 918-925.

    Google Scholar

    [21] Najman Y. The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins [J]. Earth-Science Reviews, 2006, 74(1-2): 1-72.

    Google Scholar

    [22] Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise [J]. Science, 1994, 265(5169): 228-231. doi: 10.1126/science.265.5169.228

    CrossRef Google Scholar

    [23] Hori K, Saito Y, Zhao Q H, et al. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China [J]. Sedimentary Geology, 2002, 146(3-4): 249-264. doi: 10.1016/S0037-0738(01)00122-1

    CrossRef Google Scholar

    [24] Hori K, Saito Y. An early Holocene sea-level jump and delta initiation [J]. Geophysical Research Letters, 2007, 34(18): L18401. doi: 10.1029/2007GL031029

    CrossRef Google Scholar

    [25] Wright L D. River deltas[M]//Davis R A Jr. Coastal Sedimentary Environments. 2nd ed. New York: Springer-Verlag, 1985: 1-76.

    Google Scholar

    [26] Elliott T. Clastic shorelines[M]//Reading H G. Sedimentary Environments and Facies. Oxford: Blackwell, 1986: 113-154.

    Google Scholar

    [27] Woodroffe C D. Coasts: Form, Process and Evolution[M]. New York: Cambridge University Press, 2002: 1-623.

    Google Scholar

    [28] Gao S. Modeling the growth limit of the Changjiang Delta [J]. Geomorphology, 2007, 85(3-4): 225-236. doi: 10.1016/j.geomorph.2006.03.021

    CrossRef Google Scholar

    [29] Gao S, Collins M B. Holocene sedimentary systems on continental shelves [J]. Marine Geology, 2014, 352: 268-294. doi: 10.1016/j.margeo.2014.03.021

    CrossRef Google Scholar

    [30] Sommerfield C K. On sediment accumulation rates and stratigraphic completeness: lessons from Holocene ocean margins [J]. Continental Shelf Research, 2006, 26(17-18): 2225-2240. doi: 10.1016/j.csr.2006.07.015

    CrossRef Google Scholar

    [31] Blum M D, Törnqvist T E. Fluvial responses to climate and sea-level change: a review and look forward [J]. Sedimentology, 2000, 41(S1): 2-48.

    Google Scholar

    [32] Blum M D, Roberts H H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise [J]. Nature Geoscience, 2009, 2(7): 488-491. doi: 10.1038/ngeo553

    CrossRef Google Scholar

    [33] Duc D M, Nhuan M T, Van Ngoi C. An analysis of coastal erosion in the tropical rapid accretion delta of the Red River, Vietnam [J]. Journal of Asian Earth Sciences, 2012, 43(1): 98-109. doi: 10.1016/j.jseaes.2011.08.014

    CrossRef Google Scholar

    [34] Yang S L, Luo X X, Temmerman S, et al. Role of delta‐front erosion in sustaining salt marshes under sea‐level rise and fluvial sediment decline [J]. Limnology and Oceanography, 2020, 65(9): 1990-2009. doi: 10.1002/lno.11432

    CrossRef Google Scholar

    [35] Syvitski J P M, Saito Y. Morphodynamics of deltas under the influence of humans [J]. Global and Planetary Change, 2007, 57(3-4): 261-282. doi: 10.1016/j.gloplacha.2006.12.001

    CrossRef Google Scholar

    [36] Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities [J]. Nature Geoscience, 2009, 2(10): 681-686. doi: 10.1038/ngeo629

    CrossRef Google Scholar

    [37] Restrepo J C, Schrottke K, Traini C, et al. Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): insights from a period of intense change and human intervention (1990-2010) [J]. Journal of Coastal Research, 2016, 32(3): 575-589.

    Google Scholar

    [38] Gilbert G K. The topographic features of lake shores[R]. Reston, Virginia: U. S. Geological Survey, 1885: 75-123.

    Google Scholar

    [39] Bates C C. Rational theory of delta formation [J]. AAPG Bulletin, 1953, 37(9): 2119-2162.

    Google Scholar

    [40] Coleman J M. Dynamic changes and processes in the Mississippi River delta [J]. GSA Bulletin, 1988, 100(7): 999-1015. doi: 10.1130/0016-7606(1988)100<0999:DCAPIT>2.3.CO;2

    CrossRef Google Scholar

    [41] Reading H G. Sedimentary Environments and Facies[M]. 2nd ed. Oxford: Blackwell Scientific Publications, 1991: 1-615.

    Google Scholar

    [42] Barrell J. Criteria for the recognition of ancient delta deposits [J]. GSA Bulletin, 1912, 23(1): 377-446. doi: 10.1130/GSAB-23-377

    CrossRef Google Scholar

    [43] Fisher W L, McGowen J H. Depositional systems in Wilcox Group (Eocene) of Texas and their relation to occurrence of oil and gas [J]. AAPG Bulletin, 1969, 53(1): 30-54.

    Google Scholar

    [44] Shelton J W. Models of Sand and Sandstone Deposits: A Methodology for Determining Sand Genesis and Trend[M]. Norman: University of Oklahoma, 1973: 122.

    Google Scholar

    [45] Ethridge F G, Gopinath T R, Davies D K. Recognition of deltaic environments from small samples[M]//Broussard M L. Deltas: Models for Exploration. Texas: Houston Geological Society, 1975: 151-164.

    Google Scholar

    [46] Moore D. Deltaic sedimentation [J]. Earth-Science Reviews, 1966, 1(2-3): 87-104. doi: 10.1016/0012-8252(66)90001-8

    CrossRef Google Scholar

    [47] Wright L D, Coleman J M. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes [J]. AAPG Bulletin, 1973, 57(2): 370-398.

    Google Scholar

    [48] Galloway W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems[C]//Broussard M L. Deltas: Models for Exploration. Texas: Houston Geological Society, 1975: 87-98.

    Google Scholar

    [49] Coleman J M, Roberts H H, Stone G W. Mississippi River delta: an overview [J]. Journal of Coastal Research, 1998, 14(3): 699-716.

    Google Scholar

    [50] Evans G. Deltas: the fertile dustbins of the continents [J]. Proceedings of the Geologists' Association, 2012, 123(3): 397-418. doi: 10.1016/j.pgeola.2011.11.001

    CrossRef Google Scholar

    [51] Palinkas C M, Nittrouer C A. Modern sediment accumulation on the Po shelf, Adriatic Sea [J]. Continental Shelf Research, 2007, 27(3-4): 489-505. doi: 10.1016/j.csr.2006.11.006

    CrossRef Google Scholar

    [52] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008

    CrossRef Google Scholar

    [53] Gao S, Liu Y L, Yang Y, et al. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf [J]. Journal of Asian Earth Sciences, 2015, 114: 562-573. doi: 10.1016/j.jseaes.2015.07.024

    CrossRef Google Scholar

    [54] Mayall M J, Yeilding C A, Oldroyd J D, et al. Facies in a shelf-edge delta-An example from the subsurface of the Gulf of Mexico, middle Pliocene, Mississippi Canyon, Block 109 [J]. AAPG Bulletin, 1992, 76(4): 435-448.

    Google Scholar

    [55] Dixon J F, Steel R J, Olariu C. River-dominated, shelf-edge deltas: delivery of sand across the shelf break in the absence of slope incision [J]. Sedimentology, 2012, 59(4): 1133-1157. doi: 10.1111/j.1365-3091.2011.01298.x

    CrossRef Google Scholar

    [56] Bourget J, Ainsworth R B, Thompson S. Seismic stratigraphy and geomorphology of a tide or wave dominated shelf-edge delta (NW Australia): process-based classification from 3D seismic attributes and implications for the prediction of deep-water sands [J]. Marine and Petroleum Geology, 2014, 57: 359-384. doi: 10.1016/j.marpetgeo.2014.05.021

    CrossRef Google Scholar

    [57] Liu J, Kong X H, Saito Y, et al. Subaqueous deltaic formation of the Old Yellow River (AD 1128-1855) on the western South Yellow Sea [J]. Marine Geology, 2013, 344: 19-33. doi: 10.1016/j.margeo.2013.07.003

    CrossRef Google Scholar

    [58] Goodbred S L Jr, Saito Y. Tide-dominated deltas[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 129-149.

    Google Scholar

    [59] de Fátima Rossetti D, Polizel S P, Cohen M C L, et al. Late Pleistocene-Holocene evolution of the Doce River delta, southeastern Brazil: implications for the understanding of wave-influenced deltas [J]. Marine Geology, 2015, 367: 171-190. doi: 10.1016/j.margeo.2015.05.012

    CrossRef Google Scholar

    [60] Qi Y L, Yu Q, Gao S, et al. Morphological evolution of river mouth spits: wave effects and self-organization patterns [J]. Estuarine, Coastal and Shelf Science, 2021, 262: 107567. doi: 10.1016/j.ecss.2021.107567

    CrossRef Google Scholar

    [61] Yang S L, Belkin I M, Belkina A I, et al. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century [J]. Estuarine, Coastal and Shelf Science, 2003, 57(4): 689-699. doi: 10.1016/S0272-7714(02)00409-2

    CrossRef Google Scholar

    [62] Gao S, Wang Y P, Gao J H. Sediment retention at the Changjiang sub-aqueous delta over a 57 year period, in response to catchment changes [J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 29-38. doi: 10.1016/j.ecss.2011.07.015

    CrossRef Google Scholar

    [63] Li G C, Zhou L, Qi Y L, et al. Threshold sediment flux for the formation of river deltas in Hainan Island, southern China [J]. Journal of Geographical Sciences, 2019, 29(1): 146-160. doi: 10.1007/s11442-019-1589-y

    CrossRef Google Scholar

    [64] Day J W Jr, Boesch D F, Clairain E J, et al. Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita [J]. Science, 2007, 315(5819): 1679-1684. doi: 10.1126/science.1137030

    CrossRef Google Scholar

    [65] Ta T K O, Nguyen V L, Tateishi M, et al. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam [J]. Quaternary Science Reviews, 2002, 21(16-17): 1807-1819. doi: 10.1016/S0277-3791(02)00007-0

    CrossRef Google Scholar

    [66] 吴超羽, 包芸, 任杰, 等. 珠江三角洲及河网形成演变的数值模拟和地貌动力学分析: 距今6000~2 500a[J]. 海洋学报, 2006, 28(4):64-80

    Google Scholar

    WU Chaoyu, BAO Yun, REN Jie, et al. A numerical simulation and mophodynamic analysis on the evolution of the Zhujiang River Delta in China: 6000-2500 aBP [J]. Acta Oceanologica Sinica, 2006, 28(4): 64-80.

    Google Scholar

    [67] 吴超羽, 韦惺. 从溺谷湾到三角洲: 现代珠江三角洲形成演变研究辨析[J]. 海洋学报, 2021, 43(1):1-26

    Google Scholar

    WU Chaoyu, WEI Xing. From drowned valley to delta: discrimination and analysis on issues of the formation and evolution of the Zhujiang River Delta [J]. Haiyang Xuebao, 2021, 43(1): 1-26.

    Google Scholar

    [68] Nittrouer C A, Kuehl S A, DeMaster D J, et al. The deltaic nature of Amazon shelf sedimentation [J]. GSA Bulletin, 1986, 97(4): 444-458. doi: 10.1130/0016-7606(1986)97<444:TDNOAS>2.0.CO;2

    CrossRef Google Scholar

    [69] Milliman J D, Summerhayes C P, Barretto H T. Quaternary sedimentation on the Amazon continental margin: a model [J]. GSA Bulletin, 1975, 86(5): 610-614. doi: 10.1130/0016-7606(1975)86<610:QSOTAC>2.0.CO;2

    CrossRef Google Scholar

    [70] Nittrouer C A, Kuehl S A. Geological significance of sediment transport and accumulation on the Amazon continental shelf [J]. Marine Geology, 1995, 125(3-4): 175-176. doi: 10.1016/0025-3227(95)00073-8

    CrossRef Google Scholar

    [71] Chen J Y, Li D J, Chen B L, et al. The processes of dynamic sedimentation in the Changjiang Estuary [J]. Journal of Sea Research, 1999, 41(1-2): 129-140. doi: 10.1016/S1385-1101(98)00047-1

    CrossRef Google Scholar

    [72] Rich J L. Three critical environments of deposition, and criteria for recognition of rocks deposited in each of them [J]. GSA Bulletin, 1951, 62(1): 1-20. doi: 10.1130/0016-7606(1951)62[1:TCEODA]2.0.CO;2

    CrossRef Google Scholar

    [73] Mathews W H, Shepard F P. Sedimentation of fraser river delta, british columbia [J]. AAPG Bulletin, 1962, 46(8): 1416-1438.

    Google Scholar

    [74] Kenyon P M, Turcotte D L. Morphology of a delta prograding by bulk sediment transport [J]. GSA Bulletin, 1985, 96(11): 1457-1465. doi: 10.1130/0016-7606(1985)96<1457:MOADPB>2.0.CO;2

    CrossRef Google Scholar

    [75] Chillarige A V, Morgenstern N R, Robertson P K, et al. Seabed instability due to flow liquefaction in the Fraser River delta [J]. Canadian Geotechnical Journal, 1997, 34(4): 520-533. doi: 10.1139/T97-019

    CrossRef Google Scholar

    [76] Maloney J M, Bentley S J, Xu K H, et al. Mass wasting on the Mississippi River subaqueous delta [J]. Earth-Science Reviews, 2020, 200: 103001. doi: 10.1016/j.earscirev.2019.103001

    CrossRef Google Scholar

    [77] Wright L D, Wiseman W J Jr, Yang Z S, et al. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe (Yellow River) [J]. Continental Shelf Research, 1990, 10(1): 1-40. doi: 10.1016/0278-4343(90)90033-I

    CrossRef Google Scholar

    [78] Hill P R, Lintern D G. Turbidity currents on the open slope of the Fraser Delta [J]. Marine Geology, 2022, 445: 106738. doi: 10.1016/j.margeo.2022.106738

    CrossRef Google Scholar

    [79] Friedrichs C T, Scully M E. Modeling deposition by wave-supported gravity flows on the Po River prodelta: from seasonal floods to prograding clinoforms [J]. Continental Shelf Research, 2007, 27(3-4): 322-337. doi: 10.1016/j.csr.2006.11.002

    CrossRef Google Scholar

    [80] Cattaneo A, Correggiari A, Langone L, et al. The late-Holocene Gargano subaqueous delta, Adriatic shelf: sediment pathways and supply fluctuations [J]. Marine Geology, 2003, 193(1-2): 61-91. doi: 10.1016/S0025-3227(02)00614-X

    CrossRef Google Scholar

    [81] Niedoroda A W, Reed C W, Das H, et al. Analyses of a large-scale depositional clinoformal wedge along the Italian Adriatic coast [J]. Marine Geology, 2005, 222-223: 179-192. doi: 10.1016/j.margeo.2005.06.012

    CrossRef Google Scholar

    [82] Liu J P, Kuehl S A, Pierce A C, et al. Fate of ayeyarwady and thanlwin rivers sediments in the Andaman sea and bay of bengal [J]. Marine Geology, 2020, 423: 106137. doi: 10.1016/j.margeo.2020.106137

    CrossRef Google Scholar

    [83] 金翔龙. 东海海洋地质[M]. 北京: 海洋出版社, 1992: 1-524

    Google Scholar

    JIN Xianglong. Marine Geology of the East China Sea[M]. Beijing: China Ocean Press, 1992: 1-524.

    Google Scholar

    [84] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea [J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013

    CrossRef Google Scholar

    [85] 李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4):705-727

    Google Scholar

    LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea [J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705-727.

    Google Scholar

    [86] Liu J, Qiu J D, Saito Y, et al. Late Pleistocene to Holocene facies architecture and sedimentary evolution of the Zhejiang coast, East China Sea [J]. Marine Geology, 2023, 459: 107027. doi: 10.1016/j.margeo.2023.107027

    CrossRef Google Scholar

    [87] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009

    CrossRef Google Scholar

    [88] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea [J]. Marine Geology, 2007, 236(3-4): 165-187. doi: 10.1016/j.margeo.2006.10.031

    CrossRef Google Scholar

    [89] Liu Y L, Gao S, Wang Y P, et al. Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea [J]. Marine Geology, 2014, 347: 43-57. doi: 10.1016/j.margeo.2013.10.012

    CrossRef Google Scholar

    [90] Lee H J, Jeon C K, Lim H S. Dynamical analysis of the mud-belt formation in the Bohai, Yellow and East China seas [J]. Marine Geology, 2020, 423: 106140. doi: 10.1016/j.margeo.2020.106140

    CrossRef Google Scholar

    [91] Sternberg R W, Cacchione D A, Paulso B, et al. Observations of sediment transport on the Amazon subaqueous delta [J]. Continental Shelf Research, 1996, 16(5-6): 697-715. doi: 10.1016/0278-4343(95)00045-3

    CrossRef Google Scholar

    [92] Uehara K, Saito Y. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology [J]. Sedimentary Geology, 2003, 162(1-2): 25-38. doi: 10.1016/S0037-0738(03)00234-3

    CrossRef Google Scholar

    [93] 任美鍔. 珠江河口动力地貌特征及海滩利用問题[J]. 南京大学学报:自然科学版, 1964, 8(1):135-147

    Google Scholar

    REN Meie. Dynamic geomorphology and beach utilization of the Pearl River Estuary [J]. Journal of Nanjing University:Natural Sciences, 1964, 8(1): 135-147.

    Google Scholar

    [94] Owen R B. Modern fine-grained sedimentation - spatial variability and environmental controls on an inner pericontinental shelf, Hong Kong [J]. Marine Geology, 2005, 214(1-3): 1-26. doi: 10.1016/j.margeo.2004.11.004

    CrossRef Google Scholar

    [95] 薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献: 以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89

    Google Scholar

    XUE Chengfeng, JIA Jianjun, GAO Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: results from Jiaojiang River and Oujiang River [J]. Haiyang Xuebao, 2018, 40(5): 75-89.

    Google Scholar

    [96] Suter J R, Berryhill H L Jr. Late Quaternary shelf-margin deltas, northwest Gulf of Mexico [J]. AAPG Bulletin, 1985, 69(1): 77-91.

    Google Scholar

    [97] Sydow J, Roberts H H. Stratigraphic framework of a late Pleistocene shelf-edge delta, northeast Gulf of Mexico [J]. AAPG Bulletin, 1994, 78(8): 1276-1312.

    Google Scholar

    [98] Porębski S J, Steel R J. Shelf-margin deltas: their stratigraphic significance and relation to deepwater sands [J]. Earth-Science Reviews, 2003, 62(3-4): 283-326. doi: 10.1016/S0012-8252(02)00161-7

    CrossRef Google Scholar

    [99] Muto T, Steel R J. In defense of shelf‐edge delta development during falling and lowstand of relative sea level [J]. The Journal of Geology, 2002, 110(4): 421-436. doi: 10.1086/340631

    CrossRef Google Scholar

    [100] Patruno S, Helland-Hansen W. Clinoforms and clinoform systems: review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins [J]. Earth-Science Reviews, 2018, 185: 202-233. doi: 10.1016/j.earscirev.2018.05.016

    CrossRef Google Scholar

    [101] Fielding L, Najman Y, Millar I, et al. The initiation and evolution of the River Nile [J]. Earth and Planetary Science Letters, 2018, 489: 166-178. doi: 10.1016/j.jpgl.2018.02.031

    CrossRef Google Scholar

    [102] Hori K, Tanabe S, Saito Y, et al. Delta initiation and Holocene sea-level change: example from the Song Hong (Red River) delta, Vietnam [J]. Sedimentary Geology, 2004, 164(3-4): 237-249. doi: 10.1016/j.sedgeo.2003.10.008

    CrossRef Google Scholar

    [103] Tamura T, Saito Y, Sieng S, et al. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland [J]. Quaternary Science Reviews, 2009, 28(3-4): 327-344. doi: 10.1016/j.quascirev.2008.10.010

    CrossRef Google Scholar

    [104] Bolshiyanov D, Makarov A, Savelieva L. Lena River delta formation during the Holocene [J]. Biogeosciences, 2015, 12(2): 579-593. doi: 10.5194/bg-12-579-2015

    CrossRef Google Scholar

    [105] Vespremeanu-Stroe A, Zăinescu F, Preoteasa L, et al. Holocene evolution of the Danube delta: an integral reconstruction and a revised chronology [J]. Marine Geology, 2017, 388: 38-61. doi: 10.1016/j.margeo.2017.04.002

    CrossRef Google Scholar

    [106] Cho A, Cheong D, Kim J C, et al. Delta formation in the Nakdong River, Korea, during the Holocene as Inferred from the diatom assemblage [J]. Journal of Coastal Research, 2017, 33(1): 67-77. doi: 10.2112/JCOASTRES-D-15-00240.1

    CrossRef Google Scholar

    [107] Anthony E J, Marriner N, Morhange C. Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: from progradation to destruction phase?[J] Earth-Science Reviews, 2014, 139: 336-361.

    Google Scholar

    [108] Hanebuth T J J, Lantzsch H, Nizou J. Mud depocenters on continental shelves-appearance, initiation times, and growth dynamics [J]. Geo-Marine Letters, 2015, 35(6): 487-503. doi: 10.1007/s00367-015-0422-6

    CrossRef Google Scholar

    [109] Li G C, Xia Q, Wang Y P, et al. Geometric modeling of Holocene large-river delta growth patterns, as constrained by environmental settings [J]. Science China Earth Sciences, 2021, 64(2): 318-328. doi: 10.1007/s11430-019-9708-6

    CrossRef Google Scholar

    [110] Davis R A Jr. Depositional Systems: A Genetic Approach to Sedimentary Geology[M]. Englewood Cliffs: Prentice-Hall, 1983: 1-669.

    Google Scholar

    [111] Skolnick H. Stratigraphy of some Lower Cretaceous rocks of Black Hills area [J]. AAPG Bulletin, 1958, 42(4): 787-815.

    Google Scholar

    [112] Ferm J C, Williams E G. Characteristics of a carboniferous marine invasion in western pennsylvania [J]. Journal of Sedimentary Petrology, 1965, 35(2): 319-330.

    Google Scholar

    [113] Ferm J C, Cavaroc V V Jr. A nonmarine sedimentary model for the Allegheny rocks of West Virginia[M]//de Vries Klein G. Late Paleozoic and Mesozoic Continental Sedimentation, Northeastern North America. Boulder, Colorado: Geological Society of America Special, 1968: 1-19.

    Google Scholar

    [114] Brown L F Jr. Geometry and distribution of fluvial and deltaic sandstones (Pennsylvanian and Permian), north-central Texas [J]. Gulf Coast Association of Geological Societies Transactions, 1969, 19: 23-47.

    Google Scholar

    [115] Ferm J C. Allegheny deltaic deposits[C]//Morgan J P, Shaver R H. Deltaic Sedimentation, Modern and Ancient. Tulsa: SEPM Special Publication, 1970: 246-255.

    Google Scholar

    [116] Visher G S, Sandro S B, Phares R S. Pennsylvanian delta patterns and petroleum occurrences in eastern Oklahoma [J]. AAPG Bulletin, 1971, 55(8): 1206-1230.

    Google Scholar

    [117] Ferm J C. Carboniferous environmental models in eastern United States and their significance[M]//Briggs G. Carboniferous of the Southeastern United States. Geological Society of America, 1974: 79-95.

    Google Scholar

    [118] Bose P K, Eriksson P G, Sarkar S, et al. Sedimentation patterns during the Precambrian: a unique record? [J]. Marine and Petroleum Geology, 2012, 33(1): 34-68. doi: 10.1016/j.marpetgeo.2010.11.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(3247) PDF downloads(381) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint