2023 Vol. 43, No. 3
Article Contents

YANG Shouye, JIA Qi, XU Xinning, WU Xuechao, LIAN Ergang. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 26-34. doi: 10.16562/j.cnki.0256-1492.2023052901
Citation: YANG Shouye, JIA Qi, XU Xinning, WU Xuechao, LIAN Ergang. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 26-34. doi: 10.16562/j.cnki.0256-1492.2023052901

Submarine reverse weathering and its effect on oceanic elements cycling

  • Reverse weathering in the marine environment refers to the process in which silicon reacts with soluble cations to form authigenic aluminosilicate minerals (clays), while consuming ocean alkalinity and releasing CO2. The reverse weathering hypothesis was proposed in 1966 and has attracted rapidly increasing research attention over the last two decades. It has been regarded as an important mechanism regulating global carbon, oceanic silicon and key element cycles, and ocean alkalinity. Reverse weathering can occur in various marine environments including estuarine deltas and marginal seas, hydrothermal or deeply buried diagenetic environments, and deep oceans. The reaction timescales of reverse weathering vary widely, ranging from days to millions of years, and the controlling factors of the reactions are also significantly different in different marine environments. The major research methods of reverse weathering include direct observation of authigenic silicate minerals, chemical analysis of pore water and sediments, and experimental simulation and modelling, etc. The quantification of the degree of reverse weathering, the determination of limiting factors, and evaluation of its influence on the key element cycling have always been the key issues in the research of reverse weathering. The rapid development of non-traditional stable (metal) isotopes may allow us to better constrain the reverse weathering research. The East Asian continental margin is featured by the world's largest river delta, wide continental shelf, and characteristic hydrothermal activity, whose unique muddy sedimentary systems and active interface reactions and processes make the continental margin a natural laboratory for the integrated study of reverse weathering.

  • 加载中
  • [1] Mackenzie F T, Garrels R M. Chemical balance between rivers and oceans [J]. American Journal of Science, 1966, 264(7): 507-525. doi: 10.2475/ajs.264.7.507

    CrossRef Google Scholar

    [2] Mackenzie F T, Kump L R. Reverse Weathering, Clay Mineral Formation, and Oceanic Element Cycles [J]. Science, 1995, 270(5236): 586-587. doi: 10.1126/science.270.5236.586

    CrossRef Google Scholar

    [3] Ristvet B L. Reverse Weathering Reactions within Recent Nearshore Marine Sediments, Kaneohe Bay, Oahu[D]. Honolulu, University of Hawaii, 1978.

    Google Scholar

    [4] Von Damm K L, Edmond J M. Reverse weathering in the closed-basin lakes of the Ethiopian Rift [J]. American Journal of Science, 1984, 284: 835-862. doi: 10.2475/ajs.284.7.835

    CrossRef Google Scholar

    [5] Goldschmidt V M. Grundlagen der quantitativen Geochemie. Fortschritte der Mineralogie, Kristallographie und Petrographie[J]. 1933, 17: 112-156.

    Google Scholar

    [6] Garrels R M. Silica: role in the buffering of natural waters [J]. Science, 1965, 148(3666): 69. doi: 10.1126/science.148.3666.69

    CrossRef Google Scholar

    [7] Sillén L G. The physical chemistry of seawater[M]//Sears M. Oceanography. Washington: AAAS Publisher, 1961: 549-82.

    Google Scholar

    [8] Sillén L G. The ocean as a chemical system [J]. Science, 1967, 156(3779): 1189-1197. doi: 10.1126/science.156.3779.1189

    CrossRef Google Scholar

    [9] Corliss J B, Dymond J, Gordon L, et al. Submarine thermal springs on the Galapagos Rift [J]. Science, 1979, 203(4385): 1073-1083. doi: 10.1126/science.203.4385.1073

    CrossRef Google Scholar

    [10] Rona P A. New evidence for seabed resources from global tectonics [J]. Ocean Management, 1973, 1: 145-159. doi: 10.1016/0302-184X(73)90009-7

    CrossRef Google Scholar

    [11] Scott R B, Rona P A, Mcgregor B A. The TAG hydrothermal field [J]. Nature, 1974, 251(5473): 301-302. doi: 10.1038/251301a0

    CrossRef Google Scholar

    [12] Michalopoulos P, Aller R C. Rapid Clay Mineral Formation in Amazon Delta Sediments: Reverse Weathering and Oceanic Elemental Cycles [J]. Science, 1995, 270(5236): 614-617. doi: 10.1126/science.270.5236.614

    CrossRef Google Scholar

    [13] Michalopoulos P, Aller R C. Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds [J]. Geology, 2000, 28(12): 1095-1098. doi: 10.1130/0091-7613(2000)28<1095:CODTCD>2.0.CO;2

    CrossRef Google Scholar

    [14] Michalopoulos P, Aller R C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage [J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1061-1085. doi: 10.1016/j.gca.2003.07.018

    CrossRef Google Scholar

    [15] Misra S, Froelich P N. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering [J]. Science, 2012, 335(6070): 818-823. doi: 10.1126/science.1214697

    CrossRef Google Scholar

    [16] Dunlea A G, Murray RW, Santiago Ramos D P, et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering [J]. Nature Communications, 2017, 8(1): 844. doi: 10.1038/s41467-017-00853-5

    CrossRef Google Scholar

    [17] Isson T T, Planavsky N J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate [J]. Nature, 2018, 560(7719): 471-475. doi: 10.1038/s41586-018-0408-4

    CrossRef Google Scholar

    [18] Isson T T, Planavsky N J, Coogan L A, et al. Evolution of the global carbon cycle and climate regulation on earth [J]. Global Biogeochemical Cycles, 2020, 34(2): e2018GB006061.

    Google Scholar

    [19] Zhang X, Gaillardet J, Barrier L, et al. Li and Si isotopes reveal authigenic clay formation in a palaeo-delta [J]. Earth and Planetary Science Letters, 2022, 578: 117339. doi: 10.1016/j.jpgl.2021.117339

    CrossRef Google Scholar

    [20] Hilton R G, West A J. Mountains, erosion and the carbon cycle [J]. Nature Reviews Earth & Environment, 2020, 1(6): 284-299.

    Google Scholar

    [21] Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: Princeton University Press, 1980.

    Google Scholar

    [22] Church T M. Marine Chemistry in the Coastal Environment: Principles, Perspective and Prospectus [J]. Aquatic Geochemistry, 2016, 22(4): 375-389. doi: 10.1007/s10498-016-9296-0

    CrossRef Google Scholar

    [23] Berner E K, Berner R A. Global Environment: Water, Air, and Geochemical Cycles[M]. Princeton: Princeton University Press, 2011.

    Google Scholar

    [24] Krissansen-Totton J, Catling D C. A coupled carbon-silicon cycle model over Earth history: Reverse weathering as a possible explanation of a warm mid-Proterozoic climate [J]. Earth and Planetary Science Letters, 2020, 537: 116181. doi: 10.1016/j.jpgl.2020.116181

    CrossRef Google Scholar

    [25] Cao C, Bataille C P, Song H, et al. Persistent late permian to early triassic warmth linked to enhanced reverse weathering [J]. Nature Geoscience, 2022, 15: 832-838. doi: 10.1038/s41561-022-01009-x

    CrossRef Google Scholar

    [26] Geilert S, Frick D A, Garbe-Schönberg D, et al. Coastal El Niño triggers rapid marine silicate alteration on the seafloor [J]. Nature Communications, 2023, 14(1): 1676. doi: 10.1038/s41467-023-37186-5

    CrossRef Google Scholar

    [27] Baldermann A, Banerjee S, Czuppon G, et al. Impact of green clay authigenesis on element sequestration in marine settings [J]. Nature Communications, 2022, 13(1): 1527. doi: 10.1038/s41467-022-29223-6

    CrossRef Google Scholar

    [28] Loucaides S, Michalopoulos P, Presti M, et al. Seawater-mediated interactions between diatomaceous silica and terrigenous sediments: Results from long-term incubation experiments [J]. Chemical Geology, 2010, 270(1-4): 68-79. doi: 10.1016/j.chemgeo.2009.11.006

    CrossRef Google Scholar

    [29] Bennekom A, Gaast S. Possible clay structures in frustules of living diatoms [J]. Geochimica et Cosmochimica Acta, 1976, 40: 1149-1152. doi: 10.1016/0016-7037(76)90150-2

    CrossRef Google Scholar

    [30] Baldermann A, Warr L N, Letofsky-Papst I, et al. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments [J]. Nature Geoscience, 2015, 8(11): 885-889. doi: 10.1038/ngeo2542

    CrossRef Google Scholar

    [31] Scholz F, Severmann S, Mcmanus J, et al. On the isotope composition of reactive iron in marine sediments: Redox shuttle versus early diagenesis [J]. Chemical Geology, 2014, 389: 48-59. doi: 10.1016/j.chemgeo.2014.09.009

    CrossRef Google Scholar

    [32] Boning P, Schnetger B, Belz L, et al. Sedimentary iron cycling in the Benguela upwelling system off Namibia [J]. Earth and Planetary Science Letters, 2020, 538: 116212. doi: 10.1016/j.jpgl.2020.116212

    CrossRef Google Scholar

    [33] Ehlert C, Doering K, Wallmann K, et al. Stable silicon isotope signatures of marine pore waters: Biogenic opal dissolution versus authigenic clay mineral formation [J]. Geochimica et Cosmochimica Acta, 2016, 191: 102-117. doi: 10.1016/j.gca.2016.07.022

    CrossRef Google Scholar

    [34] Li F, Penman D, Planavsky N, et al. Reverse weathering may amplify post-Snowball atmospheric carbon dioxide levels [J]. Precambrian Research, 2021, 364: 106279. doi: 10.1016/j.precamres.2021.106279

    CrossRef Google Scholar

    [35] Santiago Ramos D P, Coogan L A, Murphy J G, et al. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater [J]. Earth and Planetary Science Letters, 2020, 541: 116290. doi: 10.1016/j.jpgl.2020.116290

    CrossRef Google Scholar

    [36] Steefel C I, Appelo C, Arora B, et al. Reactive transport codes for subsurface environmental simulation [J]. Computational Geosciences, 2015, 19(3): 445-478. doi: 10.1007/s10596-014-9443-x

    CrossRef Google Scholar

    [37] Wallmann K, Aloisi G, Haeckel M, et al. Silicate weathering in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918. doi: 10.1016/j.gca.2008.03.026

    CrossRef Google Scholar

    [38] Geilert S, Grasse P, Doering K, et al. Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis [J]. Biogeosciences, 2020, 17(7): 1745-1763. doi: 10.5194/bg-17-1745-2020

    CrossRef Google Scholar

    [39] Torres M E, Hong W L, Solomon E A, et al. Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial [J]. Earth-Science Reviews, 2020, 200: 102960. doi: 10.1016/j.earscirev.2019.102960

    CrossRef Google Scholar

    [40] Li W, Liu X-M, Wang K, et al. Potassium isotope signatures in modern marine sediments: Insights into early diagenesis [J]. Earth and Planetary Science Letters, 2022, 599: 117849. doi: 10.1016/j.jpgl.2022.117849

    CrossRef Google Scholar

    [41] Shalev N, Bontognali T, Wheat C G, et al. New isotope constraints on the Mg oceanic budget point to cryptic modern dolomite formation [J]. Nature Communications, 2019, 10(1): 5646. doi: 10.1038/s41467-019-13514-6

    CrossRef Google Scholar

    [42] Voigt M, Pearce C R, Fries D M, et al. Magnesium isotope fractionation during hydrothermal seawater–basalt interaction [J]. Geochimica et Cosmochimica Acta, 2019, 272: 21-35.

    Google Scholar

    [43] Laureijs C T, Coogan L A, Spence J. Regionally variable timing and duration of celadonite formation in the Troodos lavas (Cyprus) from Rb-Sr age distributions [J]. Chemical Geology, 2021, 560(3): 119995.

    Google Scholar

    [44] Homoky W B, Thomas W, Berelson W M, et al. Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 374: 20160246. doi: 10.1098/rsta.2016.0246

    CrossRef Google Scholar

    [45] Luo M, Li W, Geilert S, et al. Active Silica Diagenesis in the Deepest Hadal Trench Sediments [J]. Geophysical Research Letters, 2022, 49(14): e2022GL099365.

    Google Scholar

    [46] Li G, West A J. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks [J]. Earth and Planetary Science Letters, 2014, 401: 284-293. doi: 10.1016/j.jpgl.2014.06.011

    CrossRef Google Scholar

    [47] Coogan L A, Gillis K M. Temperature dependence of chemical exchange during seafloor weathering: Insights from the Troodos ophiolite [J]. Geochimica et Cosmochimica Acta, 2018, 243: 24-41. doi: 10.1016/j.gca.2018.09.025

    CrossRef Google Scholar

    [48] Higgins J A, Schrag D P. The Mg isotopic composition of Cenozoic seawater: evidence for a link between Mg-clays, seawater Mg/Ca, and climate [J]. Earth and Planetary Science Letters, 2015, 416: 73-81. doi: 10.1016/j.jpgl.2015.01.003

    CrossRef Google Scholar

    [49] Coggon R M, Teagle D A H, Smith-Duque C E, et al. Reconstructing Past Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank Calcium Carbonate Veins [J]. Science, 2010, 327(5969): 1114-1117. doi: 10.1126/science.1182252

    CrossRef Google Scholar

    [50] Masuda H. Iron-rich smectite formation in the hydrothermal sediment of Iheya Basin, Okinawa Trough[M]//Sakai H. , Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publishing Company, 1995, 509-521.

    Google Scholar

    [51] Stoffynegli P, Mackenzie F T. Mass balance of dissolved lithium in the oceans [J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 859-872. doi: 10.1016/0016-7037(84)90107-8

    CrossRef Google Scholar

    [52] Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans [J]. Earth and Planetary Science Letters, 1992, 108(1-3): 151-160. doi: 10.1016/0012-821X(92)90067-6

    CrossRef Google Scholar

    [53] Huh Y, Chan L H, Zhang L, et al. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2039-2051. doi: 10.1016/S0016-7037(98)00126-4

    CrossRef Google Scholar

    [54] You C F, Chan L H, Gieskes J M, et al. Seawater intrusion through the oceanic crust and carbonate sediment in the Equatorial Pacific: Lithium abundance and isotopic evidence [J]. Geophysical Research Letters, 2003, 30(21): 1-4.

    Google Scholar

    [55] Zhang L, Chan L H, Gieskes J M. Lithium isotope geochemistry of pore waters from ocean drilling program Sites 918 and 919, Irminger Basin [J]. Geochimica et Cosmochimica Acta, 1998, 62(14): 2437-2450. doi: 10.1016/S0016-7037(98)00178-1

    CrossRef Google Scholar

    [56] Andrews E, Strandmann P, Fantle M S. Exploring the importance of authigenic clay formation in the global Li cycle [J]. Geochimica et Cosmochimica Acta, 2020, 289: 47-68. doi: 10.1016/j.gca.2020.08.018

    CrossRef Google Scholar

    [57] Kawagucci S. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa trough[M]//Ihibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 387-403.

    Google Scholar

    [58] Araoka D, Nishio Y, Gamo T, et al. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific [J]. Geochemistry Geophysics Geosystems, 2016, 17(10): 3835-3853. doi: 10.1002/2016GC006355

    CrossRef Google Scholar

    [59] Decitre S, Buatier M, James R. Li and Li isotopic composition of hydrothermally altered sediments at Middle Valley, Juan De Fuca[J]. Chemical Geology, 2004, 211(3-4): 363-373.

    Google Scholar

    [60] Tréguer P J, Sutton J N, Brzezinski M, et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean [J]. Biogeosciences, 2021, 18(4): 1269-1289. doi: 10.5194/bg-18-1269-2021

    CrossRef Google Scholar

    [61] Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 293-334.

    Google Scholar

    [62] Demaster D J. The supply and accumulation of silica in the marine environment [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1715-1732. doi: 10.1016/0016-7037(81)90006-5

    CrossRef Google Scholar

    [63] Tréguer P J, Nelson D M, Aleido J V B, et al. The silica balance in the world ocean: a reestimate [J]. Science, 1995, 268(5209): 375-379. doi: 10.1126/science.268.5209.375

    CrossRef Google Scholar

    [64] Pondaven P, Ragueneau O, Tréguer P J, et al. Resolving the 'opal paradox' in the Southern Ocean [J]. Nature, 2000, 405(6783): 168-172. doi: 10.1038/35012046

    CrossRef Google Scholar

    [65] DeMaster D J. The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget [J]. Deep-Sea Research Part I:Topical Studies in Oceanography, 2002, 49(16): 3155-3167. doi: 10.1016/S0967-0645(02)00076-0

    CrossRef Google Scholar

    [66] La Laruelle G G, Roubeix V, Sferratore A, et al. Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition [J]. Global Biogeochemical Cycles, 2009, 23(4): GB4031.

    Google Scholar

    [67] Tréguer P J, De La Rocha C L. The world ocean silica cycle [J]. Annual Review of Marine Science, 2013, 5: 477-501. doi: 10.1146/annurev-marine-121211-172346

    CrossRef Google Scholar

    [68] Rahman S, Aller R C, Cochran J K. Cosmogenic 32Si as a tracer of biogenic silica burial and diagenesis: Major deltaic sinks in the silica cycle [J]. Geophysical Research Letters, 2016, 43(13): 7124-7132. doi: 10.1002/2016GL069929

    CrossRef Google Scholar

    [69] Rahman S, Aller R C, Cochran J K. The Missing Silica Sink: Revisiting the Marine Sedimentary Si Cycle Using Cosmogenic 32Si [J]. Global Biogeochemical Cycles, 2017, 31(10): 1559-1578. doi: 10.1002/2017GB005746

    CrossRef Google Scholar

    [70] Lacan F, Jeandel C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 245-257. doi: 10.1016/j.jpgl.2005.01.004

    CrossRef Google Scholar

    [71] Jeandel C, Oelkers E H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles [J]. Chemical Geology, 2015, 395: 50-66. doi: 10.1016/j.chemgeo.2014.12.001

    CrossRef Google Scholar

    [72] 杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5):902-910 doi: 10.3969/j.issn.1007-2802.2015.05.003

    CrossRef Google Scholar

    YANG Shouye, WEI Gangjian, SHI Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin [J]. Bulletin of Mineralogy Petrology and Geochemistry, 2015, 34(5): 902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003

    CrossRef Google Scholar

    [73] Yao P, Zhao B, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation [J]. Continental Shelf Research, 2014, 91: 1-11. doi: 10.1016/j.csr.2014.08.010

    CrossRef Google Scholar

    [74] Zhao B, Yao P, Bianchi T S, et al. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf [J]. Journal of Marine Systems, 2017, 172: 6.

    Google Scholar

    [75] 赵彬, 姚鹏, 杨作升, 等. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1):42-51 doi: 10.11867/j.issn.1001-8166.2018.01.0042

    CrossRef Google Scholar

    ZHAO Bin, YAO Peng, YANG Zuosheng, et al. Reverse weathering in river-dominated marginal seas [J]. Advances in Earth Science, 2018, 33(1): 42-51. doi: 10.11867/j.issn.1001-8166.2018.01.0042

    CrossRef Google Scholar

    [76] Mackin J E, Aller R C. Dissolved Al in sediments and waters of the East China Sea: Implications for authigenic mineral formation [J]. Geochimica et Cosmochimica Acta, 1984, 48: 281-297. doi: 10.1016/0016-7037(84)90251-5

    CrossRef Google Scholar

    [77] 张桂甲, 李从先, 业治铮. 长江口地区自生绿色颗粒的形成和分布[J]. 石油与天然气地质, 1989, 10(2): 145-153

    Google Scholar

    ZHANG Guijia J, LI Congxian, YE Zhizheng. Formation and distribution of green grains in the Yangtse river mouth area[J]. Oil & Gas Geology, 1989, 10(2): 145-153.

    Google Scholar

    [78] Zhu M X, Hao X C, Shi X N, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf [J]. Applied Geochemistry, 2012, 27(4): 892-905. doi: 10.1016/j.apgeochem.2012.01.004

    CrossRef Google Scholar

    [79] Zhu M. X, Chen K K, Yang G P, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs) [J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(11): 2811-2828. doi: 10.1002/2016JG003391

    CrossRef Google Scholar

    [80] Fan D J, Neuser R D, Sun X G, et al. Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River [J]. Geo-Marine Letters, 2008, 28(1): 7-14. doi: 10.1007/s00367-007-0084-0

    CrossRef Google Scholar

    [81] Pang Y, Fan D J, Hu Z Z, et al. The properties and spatial distributions of flocs adjacent to the Yangtze Estuary [J]. Continental Shelf Research, 2018, 167: 87-98. doi: 10.1016/j.csr.2018.07.012

    CrossRef Google Scholar

    [82] 范德江, 陈彬, 王亮, 等. 长江口外悬浮颗粒物中自生纤铁矿和胶黄铁矿[J]. 地球科学(中国地质大学学报), 2014, 39(10):1364-1370

    Google Scholar

    FAN Dejiang, CHEN Bin, WANG Liang, et al. Authigenic lepidocrocite and greigite particles in aquatic environments off the Yangtze River Estuary [J]. Earth Science, 2014, 39(10): 1364-1370.

    Google Scholar

    [83] 胡治洲, 范德江, 刘明, 等. 西太平洋边缘海表层悬浮体自生铁氧化物研究[J]. 海洋科学进展, 2019, 37(3):462-476

    Google Scholar

    HU Zhizhou, FAN Daidu, LIU Ming, et al. Authigenic iron oxide floc in the surface water of the western Pacific marginal seas [J]. Advances in Marine Science, 2019, 37(3): 462-476.

    Google Scholar

    [84] Wang C, Zhu H G, Wang P F, et al. Early diagenetic alterations of biogenic and reactive silica in the surface sediment of the Yangtze Estuary [J]. Continental Shelf Research, 2015, 99: 1-11. doi: 10.1016/j.csr.2015.03.003

    CrossRef Google Scholar

    [85] Presti M, Michalopoulos P. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta [J]. Continental Shelf Research, 2008, 28(6): 823-838. doi: 10.1016/j.csr.2007.12.015

    CrossRef Google Scholar

    [86] Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits [J]. Oceanography, 2007, 20(1): 50-65. doi: 10.5670/oceanog.2007.80

    CrossRef Google Scholar

    [87] Ishibashi J I, Tsunogai U, Toki T, et al. Chemical composition of hydrothermal fluids in the central and southern Mariana Trough backarc basin [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 121: 126-136. doi: 10.1016/j.dsr2.2015.06.003

    CrossRef Google Scholar

    [88] Kimura M, Uyeda S, Kato Y, et al. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan [J]. Tectonophysics, 1988, 145(3-4): 319-324. doi: 10.1016/0040-1951(88)90203-X

    CrossRef Google Scholar

    [89] Ueshima M, Tazaki K. Possible Role of Microbial polysaccharides in nontronite formation [J]. Clays and Clay Minerals, 2001, 49: 292-299. doi: 10.1346/CCMN.2001.0490403

    CrossRef Google Scholar

    [90] Takai K, Mottl M J, Nielsen S H H. IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough [J]. Scientific Drilling, 2012, 13: 19-27. doi: 10.5194/sd-13-19-2012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(2905) PDF downloads(161) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint