2023 Vol. 43, No. 5
Article Contents

JIANG Fuqing, ZHOU Xiaojing, LI Chuanshun. Variation in clay mineral input and the control factors in the Western Philippine Sea since 220 ka[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 85-95. doi: 10.16562/j.cnki.0256-1492.2023082402
Citation: JIANG Fuqing, ZHOU Xiaojing, LI Chuanshun. Variation in clay mineral input and the control factors in the Western Philippine Sea since 220 ka[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 85-95. doi: 10.16562/j.cnki.0256-1492.2023082402

Variation in clay mineral input and the control factors in the Western Philippine Sea since 220 ka

  • To reveal the controlling factors of clay minerals input in the Western Pacific Warm Pool since the Late Pleistocene, we analyzed the composition, source, and mass accumulation rates (MARs) of clay minerals in the sediment from Core Ph05-5 recovered from the Benham Rise in the Western Philippine Sea. The results indicate that the clay minerals in the core sediment are mainly composed of illite (13%) and smectite (8%), followed by chlorite (6%) and kaolinite (2%). Over the last 220 ka, illite and chlorite are derived mainly from the Asian continent, and smectite is mainly authigenic Fe-smectite in volcanic origin from islands around the Philippine Sea after erosion by seawater at the seabed, and smectite formed by weathering of volcanic material from islands around the West Philippine Sea. The MARs of illite and chlorite displayed significant high value during the glacial period and low value during the interglacial period, which is consistent with the total MARs of eolian dust of Core Ph05-5, MARs of Asian dust and North Pacific dust over the last 220 ka. The decrease/enhancement of solar radiation during the glacial/interglacial period, as well as the strengthening/weakening of arid in Asian continent are the main controlling factors for the increase/decrease in the input of clay minerals, such as illite from Asian continent into the Philippine Sea. The MARs of smectite in Core Ph05-5 also exhibits high value during the glacial period and low value during interglacial period, which is consistent with the total MARs of the volcanic material in Core Ph05-5. The changes of smectite in the orbital scale are mainly controlled by global sea level change and precipitation influenced by tropical ENSO processes. The low sea level during the glacial period resulted in the strengthened mixing effect between the Philippine Island and seawater, and led to an increase of smectite input in the Philippine Sea. In addition, during the glacial period, La Niña-like process was stronger in the tropical Pacific, resulting in an increase in rainfall and increased volcanic materials (smectite) input into the Philippine Sea. On the contrary, during interglacial period, the strengthened El Niño-like process resulted in the drought in the Philippine islands, and the decreased volcanic materials (smectite) input in the Philippine Sea.

  • 加载中
  • [1] Asahara Y, Tanaka T, Kamioka H, et al. Asian continental nature of 87Sr/86Sr ratios in north central Pacific sediments[J]. Earth and Planetary Science Letters, 1995, 133:105-116. doi: 10.1016/0012-821X(95)00048-H

    CrossRef Google Scholar

    [2] Jiang F, Frank M, Li T et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes[J]. Geochemistry, Geophysics, Geosystems, 2013, 14:1538-1551. doi: 10.1002/ggge.20116

    CrossRef Google Scholar

    [3] Xu Z K, Li T, Wan S M, et al. Evolution of East Asian monsoon: Clay mineral evidence in the western Philippine Sea over the past 700 kyr[J]. Journal of Asian Earth Sciences, 2012, 60:188-196. doi: 10.1016/j.jseaes.2012.08.018

    CrossRef Google Scholar

    [4] Yu Z J, Wan S M, Colin C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446:45-55. doi: 10.1016/j.jpgl.2016.04.022

    CrossRef Google Scholar

    [5] Jiang F, Zhou Y, Nan Q, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea overthe last 220 kyr as inferred from grain size and Sr-Nd isotopes[J]. Journal of Geophysical Research-Oceans, 2016, 121:6911-6928. doi: 10.1002/2016JC012000

    CrossRef Google Scholar

    [6] Ingle J C, Karig D E, Bourma A H e a. Site 292. In: Karig, DE, Ingle, JC et la, (Eds), Init Reports of the Deep-Sea Drilling Project Washington, DC, US Government Printing Office, 1975, 31: 67-79.

    Google Scholar

    [7] Wei K-Y, Lee T-Q, Cruise(LegII) t S S P o I I M-I. Nannofossil biochronology of tephra layers in Core MD972143, Benham Rise, Western Philippine Sea. Terrestrial, Atmospheric and Oceanic Sciences, 1998, 9: 153-156.

    Google Scholar

    [8] Wan S, Yu Z, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 326-328(2):152-159.

    Google Scholar

    [9] Xu Z, Li T, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid–late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 2015, 16:3182-3196. doi: 10.1002/2015GC005929

    CrossRef Google Scholar

    [10] 俞旭, 江超华. 现代海洋沉积物矿物及X射线研究. 北京: 科学出版社. 1984, 113-156

    Google Scholar

    YU Xu, JIANG Chaohua. Modern Marine Sediment Minerals and X-ray Studies [M]. Beijing: Science Press. 1984, 113-156.

    Google Scholar

    [11] 石学法, 陈丽蓉, 李坤业, 等. 西菲律宾海西部海域黏土沉积物的成因矿物学研究[J]. 海洋地质与第四纪地质, 1995, 15(2):61-72

    Google Scholar

    SHI Xuefa, CHEN Lirong, LI Kunye, et al. Study on mineralogy of the clay sediment in the west of Philippine Sea[J]. Marine Geology & Quaternary Geology, 1995, 15(2):61-72.

    Google Scholar

    [12] 王诗佾. 伊利石“开形指数”的地质意义探讨[J]. 沉积学报, 1987, 5:48-57 doi: 10.14027/j.cnki.cjxb.1987.01.007

    CrossRef Google Scholar

    WANG Shiyi. Geological significance of illite opening index[J]. Acta Sedimentologica Sinica, 1987, 5:48-57. doi: 10.14027/j.cnki.cjxb.1987.01.007

    CrossRef Google Scholar

    [13] 刘东生 等. 黄土与环境[M]. 北京: 科学出版社, 1985: 191-263

    Google Scholar

    LIU Dongsheng et al. Loess and Environment [M]. Beijing: Science Press, 1985, 191-263.

    Google Scholar

    [14] Krumm S, Buggisch W. Sample preparation effects on illite crystallinity measurements: grain size gradation and particle orientation. Journal of Metamorphic Geology, 1991, 9: 671-677.

    Google Scholar

    [15] Esquevin J. Influence de la composition chimique des illites sur-cristallinite. Bull Centre Rech Rau-SNPA, 1969, 3: 147-153.

    Google Scholar

    [16] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987: 81-92

    Google Scholar

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea [M]. Beijing: Science Press, 1987: 81-92.

    Google Scholar

    [17] Ming J, Li A, Huang J, et al. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma[J]. Chinese Journal of Oceanology and Limnology, 2014, 32:174-186. doi: 10.1007/s00343-014-3066-x

    CrossRef Google Scholar

    [18] 肖春晖, 王永红, 林间. 近1Ma以来帕里西维拉海盆沉积物物源和古气候: 粒度和黏土矿物特征的指示[J]. 沉积学报, 2022, 40(2):508-524

    Google Scholar

    XIAO Chunhui, WANG Yonghong, LIN Jian. Provenance and paleoclimate of sediments in the Parece Vela Basin in past 1 Ma: inferences from grain-size and clay mineral distribution[J]. Acta Sedimentologica Sinica, 2022, 40(2):508-524.

    Google Scholar

    [19] 杨佳毅, 蒋富清, 颜钰, 等. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4):73-83 doi: 10.13745/j.esf.sf.2022.1.8

    CrossRef Google Scholar

    YANG Jiayi, JIANG Fuqing, YAN Yu, et al. Provenance and paleoclimatic significance of clay minerals from Izu-Ogasawara Ridge since Pliocene[J]. Earth Science Frontiers, 2022, 29(4):73-83. doi: 10.13745/j.esf.sf.2022.1.8

    CrossRef Google Scholar

    [20] 颜钰, 蒋富清, 曾志刚, 等. 近2.1 Ma以来帕里西-维拉海盆黏土矿物输入变化及其对中更新世气候转型的响应[J]. 海洋地质与第四纪地质, 2022, 42(6):150-161

    Google Scholar

    YAN Yu, JIANG Fuqing, ZENG Zhigang, et al. Variations in clay mineral input in the Parece Vela Basin since the last 2.1 Ma and their response to the mid-Pleistocene transition[J]. Marine Geology & Quaternary Geology, 2022, 42(6):150-161].

    Google Scholar

    [21] Li T, Zhao J, Sun R, et al. The variation of upper ocean structure and paleoproduc-tivity in the Kuroshio source region during the last 200 kyr[J]. Marine Micropaleontology, 2010, 75:50-61. doi: 10.1016/j.marmicro.2010.02.005

    CrossRef Google Scholar

    [22] 赵京涛, 常凤鸣, 李铁刚等, 近190 ka BP以来菲律宾海黑潮源区的碳酸盐旋回及其控制因素[J]. 岩石学报, 2008, 24(6): 1401-1410

    Google Scholar

    ZHAO Jingtao, CHANG Fengming, LI Tiegang et al. Carbonate cycle and its control factors in Kuroshio source region during the last 190 ka BP. Acta Petrologica Sinica, 2008, 24(6): 1401-1410.

    Google Scholar

    [23] Martinson D G, Pisias N G, Hays J D, et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300, 000-year chronostratigraphy[J]. Quaternary Research, 1987, 27:1-29. doi: 10.1016/0033-5894(87)90046-9

    CrossRef Google Scholar

    [24] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of American Bulletin, 1965, 76:803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    CrossRef Google Scholar

    [25] Ji J, Chen J, Lu H. Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China[J]. Clay Minerals, 1999, 34:525-532. doi: 10.1180/000985599546398

    CrossRef Google Scholar

    [26] Griffin J J, Windom H, Goldberg E D. The distribution of clay minerals in the World Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1968, 15(4):433-459. doi: 10.1016/0011-7471(68)90051-X

    CrossRef Google Scholar

    [27] 张天乐和王宗良. 中国黏土矿物的电子显微镜研究[M]. 北京: 地质出版社, 1978, 1-175

    Google Scholar

    ZHANG Tianle, WANG Zongliang. Electron Microscopic Study of Clay Minerals in China [M]. Beijing: Geological Publishing House, 1978, 1-175.

    Google Scholar

    [28] ΓοрσуноЬа З Н. 蒙脱石在世界大洋沉积物中的堆积史[J]. 海洋石油, 1990, 10(6):45-48

    Google Scholar

    ΓοрσуноЬа З Н. The Accumulation History of Montmorillonite in World Ocean Sediments[J]. Offshore Oil, 1990, 10(6):45-48.

    Google Scholar

    [29] 游仲华. 太平洋中部沉积物中黏土矿物的初步研究[J]. 沉积学报, 1985, 3(3):115-124

    Google Scholar

    YOU Zhonghua. Preliminary study on the clay minerals of sediments in the middle of the Pacific Ocean[J]. Acta Sedimentologica Sinica, 1985, 3(3):115-124.

    Google Scholar

    [30] 张德玉. 马里亚纳海槽和西菲律宾海盆更新世以来沉积物中的黏土矿物[J]. 沉积学报, 1993, 11(1):111-120

    Google Scholar

    ZHANG Deyu. Clay Mineralogy of the Sediments Deposited Since the Pleistocene in the Mariana Trough and the West Philippine Basin[J]. Acta Sedimentologica Sinica, 1993, 11(1):111-120.

    Google Scholar

    [31] 石学法, 陈丽蓉, 李坤业 等. 西菲律宾海沉积物矿物组合及其地质意义[J]. 海洋与湖沼, 1994, 25(3):328-335 doi: 10.3321/j.issn:0029-814X.1994.03.015

    CrossRef Google Scholar

    SHI Xuefa, CHEN Lirong, LI Kunye. The mineral assemblages in the sediments in the west Philippine Sea and their geological implication[J]. Oceanologia et Limnologia Sinica, 1994, 25(3):328-335. doi: 10.3321/j.issn:0029-814X.1994.03.015

    CrossRef Google Scholar

    [32] Rampino M R, Stephen S. Climate-volcanism feedback and the Toba erutping of ~74, 000 years ago. Quaternary Research, 1993, 40: 269-280.

    Google Scholar

    [33] Chamley H. Clay sedimentation and paleoenvironment in the Shikoku Basin since the Middle Miocene (Deep Drilling project, Leg 58, North Philippine Sea). Initial reports of DSDP, 1980, 58: 669-678.

    Google Scholar

    [34] Lambeck K, Chappell J. Sea level change through the last glacial cycle. Science, 2001, 292: 677-686.

    Google Scholar

    [35] Hovan S A, Rea D K, Pisias N G. Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments. Paleoceanography, 1991, 6: 349-370.

    Google Scholar

    [36] Rea D K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind[J]. Reviews of Geophysics, 1994, 32:159-195. doi: 10.1029/93RG03257

    CrossRef Google Scholar

    [37] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399:429-436. doi: 10.1038/20859

    CrossRef Google Scholar

    [38] An Z, Kukla G, Porter S C, et al. Late Quaternary dust flow on the Chinese Loess Plateau. Catena, 1991, 18: 125-132.

    Google Scholar

    [39] Zhang X Y, Lu H Y, Arimoto R, et al. Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: two 250-kyr loess records[J]. Earth and Planetary Science Letters, 2002, 202:637-643. doi: 10.1016/S0012-821X(02)00797-5

    CrossRef Google Scholar

    [40] Guo Z T, Berger A, Yin Q Z, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records[J]. Climate Past, 2009, 5:21-31. doi: 10.5194/cp-5-21-2009

    CrossRef Google Scholar

    [41] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years. Quarternary Science Review, 1991, 10: 297-317.

    Google Scholar

    [42] Zhang Z, Jiang F, Li T et al. Sea-level changes controlled detrital sediment inputs to the Bicol Shelf in the western Philippine Sea since 150 ka[J]. Journal of Oceanology and Limnology, 2020, 38(4):1153-1168. doi: 10.1007/s00343-020-0051-4

    CrossRef Google Scholar

    [43] Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography, 2011, 26:PA1208. doi: 10.1029/2010PA001966

    CrossRef Google Scholar

    [44] Jose A M, Francisco R V, Cruz N A. A study on the impact of climate variability/change on water resources in the Philippines[J]. Journal of Philippine development, 1999, 26:115-134.

    Google Scholar

    [45] Lyon B, Cristi H, Verceles E R et al. Seasonal reversal of the ENSO rainfall signal in the Philippines[J]. Geophysics Research Letters, 2006, 33:L24710. doi: 10.1029/2006GL028182

    CrossRef Google Scholar

    [46] Hughen K A, Schrag D P, Jacobsen S B, et al. El Niño during the Last Interglacial Period recorded by a fossil coral from Indonesia[J]. Geophysics Research Letters, 1999, 26:3129-3132. doi: 10.1029/1999GL006062

    CrossRef Google Scholar

    [47] Ropelewski C F, Halpert M S. Quantifying Southern Oscillation-precipitation relationships[J]. Journal of Climate, 1996, 9:1043-1059. doi: 10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2

    CrossRef Google Scholar

    [48] Mason S J, Goddard L. Probabilistic precipitation anomalies associated with ENSO[J]. Bulletin of the American Meteorological Society, 2001, 82:619-638. doi: 10.1175/1520-0477(2001)082<0619:PPAAWE>2.3.CO;2

    CrossRef Google Scholar

    [49] 刘天昊, 常凤鸣, 李铁刚, 等. 450ka以来冰期旋回中冷暖期热带太平洋的类ENSO状态[J]. 第四纪研究, 2020, 40(3):646-657 doi: 10.11928/j.issn.1001-7410.2020.03.05

    CrossRef Google Scholar

    LIU Tianhao, CHANG Fengming, LI Tiegang, et al. ENSO like state in the tropical Pacific Ocean during the cold and warm periods of the glacial cycle since 450ka[J]. Quaternary Sciences, 2020, 40(3):646-657. doi: 10.11928/j.issn.1001-7410.2020.03.05

    CrossRef Google Scholar

    [50] Kissel C, Laj C, Kienast M, et al. Monsoon variability and deep oceanic circulation in the western equatorial Pacific over the last climatic cycle: Insights from sedimentary magnetic properties and sortable silt[J]. Paleoceanography, 2010, 25:PA3215. doi: 10.1029/2010PA001980

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1406) PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint