2023 Vol. 43, No. 5
Article Contents

YAN Yu, JIANG Fuqing, ZENG Zhigang. Research progress of tracing sediment sources in the Western Pacific Warm Pool[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 148-159. doi: 10.16562/j.cnki.0256-1492.2023071402
Citation: YAN Yu, JIANG Fuqing, ZENG Zhigang. Research progress of tracing sediment sources in the Western Pacific Warm Pool[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 148-159. doi: 10.16562/j.cnki.0256-1492.2023071402

Research progress of tracing sediment sources in the Western Pacific Warm Pool

More Information
  • Extracting tracer indicators from sediments is one of the effective ways to study the paleoenvironment and paleoclimate evolution in the Western Pacific Warm Pool (WPWP), and the key is to accurately identify the source region of sediments. The sources of sediments in the northern and western WPWP since the Quaternary have been studied using different source tracers, such as clay minerals, quartz, major elements, REE and Sr-Nd isotope of clastic components. Results show that the sediments of the WPWP originate mainly from the Asian continent and volcanic island arcs, and some originate from Australia and/or New Guinea. This paper systematically summarizes the sources and tracing methods of sediments in the WPWP, points out the issues in the current researches, and puts forward the prospects for the identification of sediment sources in the future.

  • 加载中
  • [1] Webster P J, Magana V O. Monsoons: Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research-Atmospheres, 1998, 103: 14451-14510. doi: 10.1029/97JC02719

    CrossRef Google Scholar

    [2] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297: 222-226. doi: 10.1126/science.1071627

    CrossRef Google Scholar

    [3] Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421: 152-155. doi: 10.1038/nature01297

    CrossRef Google Scholar

    [4] 颜钰, 蒋富清, 曾志刚, 等. 近2.1 Ma以来帕里西-维拉海盆黏土矿物输入变化及其对中更新世气候转型的响应[J]. 海洋地质与第四纪地质, 2022, 42(6): 150-161

    Google Scholar

    YAN Yu, JIANG Fuqing, ZENG Zhigang, et al. Variations in clay mineral input in the Parece Vela Basin since the last 2.1 Ma and their response to the mid-Pleistocene transition[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 150-161.

    Google Scholar

    [5] Ming J, Li A, Huang J, et al. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma[J]. Chinese Journal of Oceanology and Limnology, 2014, 32: 174-186. doi: 10.1007/s00343-014-3066-x

    CrossRef Google Scholar

    [6] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust[J]. Journal of Geophysical Research-Atmospheres, 2014, 119: 11492-11504. doi: 10.1002/2014JD022025

    CrossRef Google Scholar

    [7] Wu J, Liu Z, Zhou C. Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the Western Pacific Warm Pool[J]. Chinese Science Bulletin, 2012, 57: 3748-3760. doi: 10.1007/s11434-012-5277-x

    CrossRef Google Scholar

    [8] 朱潇, 蒋富清, 冯旭光, 等. 菲律宾海沉积物中石英的来源及其搬运方式[J]. 海洋与湖沼, 2018, 49(6): 1190-1202

    Google Scholar

    ZHU Xiao, JIANG Fuqing, Feng Xuguang, et al. The provenance and transportation of quartz in the Philippine Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(6): 1190-1202.

    Google Scholar

    [9] Yan Y, Jiang F Q, Zeng Z G, et al. Response of eolian quartz in the Parece Vela Basin sediment to the mid-Pleistocene transition[J]. Journal of Asian Earth Sciences, 2022, 236(15): 105332. doi: 10.1016/j.jseaes.2022.105332

    CrossRef Google Scholar

    [10] 徐兆凯, 李铁刚, 于心科, 等. 近700 ka来西菲律宾海沉积物来源和东亚冬季风演化的常量元素记录[J]. 科学通报, 2013, 58(11): 1048-1056 doi: 10.1360/csb2013-58-11-1048

    CrossRef Google Scholar

    XU Zhaokai, LI Tiegang, YU Xinke, et al. Sediment provenance and evolution of the East Asian winter monsoon since 700 ka recorded by major elements in the West Philippine Sea[J]. Chinese Science Bulletin, 2013, 58(11): 1048-1056. doi: 10.1360/csb2013-58-11-1048

    CrossRef Google Scholar

    [11] Liu J, Yan W, Xu W, et al. Sediment provenance in the western Pacific warm pool from the last glacial maximum to the early Holocene: Implications for ocean circulation and climatic change[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018, 493: 55-63. doi: 10.1016/j.palaeo.2017.12.040

    CrossRef Google Scholar

    [12] Peng N, Dang H, Wu J, et al. Tectonic and climatic controls on the Plio-Pleistocene evolution of sediment discharge from Papua New Guinea[J]. Marine Geology, 2021, 441: 106627. doi: 10.1016/j.margeo.2021.106627

    CrossRef Google Scholar

    [13] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海沉积物的地球化学特征与物质来源[J]. 科学通报, 2008, 53: 695-702

    Google Scholar

    XU Zhaokai, LI Anchun, JIANG Fuqing, et al. The geochemical characteristics and material sources in the eastern Philippine Sea[J]. Chinese Science Bulletin, 2008, 53: 695-702.

    Google Scholar

    [14] Jiang F, Zhou Y, Nan Q, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea overthe last 220 kyr as inferred from grain size and Sr-Nd isotopes[J]. Journal of Geophysical Research-Oceans, 2016, 121: 6911-6928. doi: 10.1002/2016JC012000

    CrossRef Google Scholar

    [15] Jiang F Q, Zhu X, Li T G, et al. Increased dust deposition in the Parece Vela Basin since the mid-Pleistocene inferred from radiogenic Sr and Nd isotopes[J]. Global and Planetary Change, 2019, 173: 83-95. doi: 10.1016/j.gloplacha.2018.12.011

    CrossRef Google Scholar

    [16] Seo I, Lee Y I, Kim W, et al. Movement of the Intertropical Convergence Zone during the mid-pleistocene transition and the response of atmospheric and surface ocean circulations in the central equatorial Pacific[J]. Geochemistry Geophysics Geosystems, 2015, 16: 3973-3981. doi: 10.1002/2015GC006077

    CrossRef Google Scholar

    [17] Wu J, Liu Z, Zhou C. Provenance and supply of Fe-enriched terrigenous sediments in the western equatorial Pacific and their relation to precipitation variations during the late Quaternary[J]. Global and Planetary Change, 2013, 108: 56-71. doi: 10.1016/j.gloplacha.2013.06.002

    CrossRef Google Scholar

    [18] Lee I T, Ogawa Y. Bottom-current deposits in the Miocene-Pliocene Misaki Formation, Izu forearc area, Japan[J]. Island Arc, 1998, 7(3): 315-329. doi: 10.1111/j.1440-1738.1998.00192.x

    CrossRef Google Scholar

    [19] Kawabe M, Fujio S, Yanagimoto D, et al. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(10): 1675-1687. doi: 10.1016/j.dsr.2009.06.003

    CrossRef Google Scholar

    [20] 靳宁. 帕里西维拉海盆西北部海域粘土矿物分布特征研究[D]. 青岛: 中国科学院海洋研究所, 2006

    Google Scholar

    JIN Ning. Clay mineral distribution in the sediments of the northwest Parece Vela Basin[D]. QingDao: Institute of Oceanology, Chinese Academy of Sciences, 2006.

    Google Scholar

    [21] Wan S, Yu Z, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 326-328(2): 152-159.

    Google Scholar

    [22] Mahoney J B. Nd and Sr isotopic signatures of fine-grained clastic sediments: A case study of western Pacific marginal basins[J]. Sedimentary Geology, 2005, 182: 183-199. doi: 10.1016/j.sedgeo.2005.07.009

    CrossRef Google Scholar

    [23] Asahara Y, Tanaka T, Kamioka H, et al. Asian continental nature of 87Sr/ 86Sr ratios in North Central Pacific sediments[J]. Earth and Planetary Science Letters, 1995, 133: 105-116. doi: 10.1016/0012-821X(95)00048-H

    CrossRef Google Scholar

    [24] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4: 535-539. doi: 10.1038/ngeo1185

    CrossRef Google Scholar

    [25] Yan X H, Ho C R, Zheng Q N. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643

    CrossRef Google Scholar

    [26] Rosenthal Y, Holbourn A E, Kulhanek D K, et al. Western Pacific Warm Pool[C]//Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2018: 1-42.https://doi.org/10.14379/iodp.proc.363. 2018.

    Google Scholar

    [27] Stuut J B W, De Deckker P, Saavedra-Pellitero M, et al. A 5.3-million-year history of monsoonal precipitation in northwestern Australia[J]. Geophysical Research Letters, 2019, 46(12): 6946-6954. doi: 10.1029/2019GL083035

    CrossRef Google Scholar

    [28] Gingele F X, Deckker P D, Hillenbrand C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia——source and transport by ocean currents[J]. Marine Geology, 2001, 179: 135-146. doi: 10.1016/S0025-3227(01)00194-3

    CrossRef Google Scholar

    [29] Middleton A W, Uysal I T, Golding S D. Chemical and mineralogical characterisation of illite-smectite: Implications for episodic tectonism and associated fluid flow, central Australia[J]. Geochimica et Cosmochimica Acta, 2015, 148: 284-303. doi: 10.1016/j.gca.2014.09.035

    CrossRef Google Scholar

    [30] Baludikay B K, François C, Sforna M C, et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia) [J]. International Journal of Coal Geology, 2018, 191: 80-94. doi: 10.1016/j.coal.2018.03.007

    CrossRef Google Scholar

    [31] Liu Z, Tuo S, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3-4): 149-155. doi: 10.1016/j.margeo.2008.08.003

    CrossRef Google Scholar

    [32] Liu Z, Zhao Y, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025

    CrossRef Google Scholar

    [33] Wan S, Li A, Clift P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009

    CrossRef Google Scholar

    [34] 郑洪汉. 中国黄土中粘土矿物的古气候记录[J]. 第四纪研究, 1985, 6(2): 41-47

    Google Scholar

    ZHENG Honghan. Paleoclimatic records of Clay minerals in loess, China[J]. Quaternary Sinica, 1985, 6(2): 41-47.

    Google Scholar

    [35] 师育新, 戴雪荣, 李节通, 等. 末次间冰期兰州黄土记录中的粘土矿物及其环境意义探讨[J]. 海洋地质与第四纪地质, 1997, 17(1): 87-94

    Google Scholar

    SHI Yuxin, DAI Xuerong, LI Jietong, et al. Origin and significance of clay minerals in the last interglacial loess in LanZhpu area, North Central China[J]. Marine Geology & Quaternary Geology, 1997, 17(1): 87-94.

    Google Scholar

    [36] 师育新, 戴雪荣, 宋之光, 等. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报, 2005, 23(4): 690-695 doi: 10.3969/j.issn.1000-0550.2005.04.019

    CrossRef Google Scholar

    SHI Yuxin, DAI Xuerong, SONG Zhiguang, et al. Characteristics of clay mineral assemblages and their spatial distribution of Chinese loess in different climatic zones[J]. Acta Sedimentologica Sinica, 2005, 23(4): 690-695. doi: 10.3969/j.issn.1000-0550.2005.04.019

    CrossRef Google Scholar

    [37] Ji J, Chen J, Lu H. Luochuan area, Loess Plateau, Central China[J]. Clays and Clay Minerals, 1999, 34: 525-532. doi: 10.1180/000985599546398

    CrossRef Google Scholar

    [38] Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust[J]. Geochemistry Geophysics Geosystems, 2007, 71: 3904-3914.

    Google Scholar

    [39] Shen Z, Li X, Cao J, et al. Characteristics of clay minerals in asian dust and their environmental significance[J]. China Particuology, 2005, 3(5): 260-264. doi: 10.1016/S1672-2515(07)60198-5

    CrossRef Google Scholar

    [40] Biscaye P E. Mineralogy and sedementation of recent deep-sea clay in Atlantic ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-825. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    CrossRef Google Scholar

    [41] Hou S S, Yang S L, Sun J M, et al. Oxygen isotope compositions of quartz grains (4-16μm) from Chinese eolian deposits and their implications for provenance[J]. Science in China Series D: Earth Sciences, 2003, 46(10): 1003-1011.

    Google Scholar

    [42] Chacko T, Cole D R, Horita J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 1-81. doi: 10.2138/gsrmg.43.1.1

    CrossRef Google Scholar

    [43] Yan Y, Sun Y B, Chen H Y, et al. Oxygen isotope signatures of quartz from major Asian dust sources: Implications for changes in the provenance of Chinese loess[J]. Geochimica et Cosmochimica Acta, 2014, 139: 399-410. doi: 10.1016/j.gca.2014.04.043

    CrossRef Google Scholar

    [44] Sun Y B, Chen H Y, Tada R, et al. ESR signal intensity and crystallinity of quartz from Gobi and sandy deserts in East Asia and implication for tracing Asian dust provenance[J]. Geochemistry Geophysics Geosystems, 2013, 14(8): 2615-2627. doi: 10.1002/ggge.20162

    CrossRef Google Scholar

    [45] Taylor S R, Mclennan S M. The Continental Crust: Its composition and evolution, An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Publications, 1985: 1-372.

    Google Scholar

    [46] Norman M D, Deckker P D. Trace metals in lacustrine and marine sediments: A case study from the Gulf of Carpentaria, northern Australia[J]. Chemical Geology, 1990, 82(3-4): 299-318.

    Google Scholar

    [47] Cha H J, Choi M S, Lee C B, et al. Geochemistry of surface sediments in the southwestern East/Japan Sea[J]. Journal of Asian Earth Sciences, 2007, 29: 685-697. doi: 10.1016/j.jseaes.2006.04.009

    CrossRef Google Scholar

    [48] 朱克超, 任江波, 王海峰, 等. 太平洋中部富REY深海粘土的地球化学特征及REY富集机制[J]. 地球科学: 中国地质大学学报, 2015, 40(6): 1052-1060 doi: 10.3799/dqkx.2015.087

    CrossRef Google Scholar

    ZHU Kechao, REN Jiangbo, WANG Haifeng, et al. Enrichment mechanism of REY and geochemical characteristics of REY-Rich pelagic clay from the Central Pacific[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(6): 1052-1060. doi: 10.3799/dqkx.2015.087

    CrossRef Google Scholar

    [49] Gallet S, Jahn B, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133(1-4): 67-88. doi: 10.1016/S0009-2541(96)00070-8

    CrossRef Google Scholar

    [50] Marini J C, Chauvel C, René C M. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source[J]. Contributions to Mineralogy & Petrology, 2005, 149(2): 216-232. doi: 10.1007/s00410-004-0645-4

    CrossRef Google Scholar

    [51] 林刚, 陈琳莹, 罗敏, 等. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质, 2019, 39(3): 12-27

    Google Scholar

    LIN Gang, CHEN Linying, LUO Min, et al. The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27.

    Google Scholar

    [52] Horz K H, Worthington T J, Winn K, et al. Late Quaternary tephra in the New Ireland Basin, Papua New Guinea[J]. Journal of Volcanology & Geothermal Research, 2004, 132(1): 73-95. doi: 10.1016/S0377-0273(03)00421-9

    CrossRef Google Scholar

    [53] 徐兆凯, 李安春, 李铁刚, 等. 东菲律宾海表层沉积物常量元素组成及地质意义[J]. 海洋地质与第四纪地质, 2010, 30(6): 43-48

    Google Scholar

    XU Zhaokai, LI Anchun, LI Tiegang, et al. Major element compositions of surface sediments in the east Philippine Sea and its geologica implication[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 43-48.

    Google Scholar

    [54] 徐兆凯, 常凤鸣, 李铁刚, 等. 24ka来冲绳海槽北部沉积物来源的高分辨率常量元素记录[J]. 海洋地质与第四纪地质, 2012, 32(4): 73-82

    Google Scholar

    XU Zhaokai, CHANG Fengming, LI Tiegang, et al. Provenance of sediments in the northern Okinawa Trough over the last 24 ka: high resolution record from major elements [J]. Marine Geology & Quaternary Geology, 2012, 32(4): 73-82.

    Google Scholar

    [55] Rollinson H R. Using geochemical data: evalution, presentation, interpretation[M]. Singapore: Longman Singapur Press, 1993: 1-343.

    Google Scholar

    [56] 蓝先洪, 张志珣, 王中波, 等. 东海外陆架晚第四纪沉积物的稀土元素组成及物源示踪[J]. 地球学报, 2014, 35(3): 305-313

    Google Scholar

    LAN Xianhong, ZHANG Zhixun, WANG Zhongbo, et al. Distribution of rare earth elements in late Quaternary sediments on the outer shelf of the East China Sea and their source tracing[J]. Acta Geoscientia Sinica, 2014, 35(3): 305-313.

    Google Scholar

    [57] 曹鹏, 石学法, 李魏然, 等. 安达曼海东南部海域表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(5): 57-67

    Google Scholar

    CAO Peng, SHI Xuefa, LI Weiran, et al. Rare earth element geochemistry of surface sediments in southeastern Andaman Sea and implications for provenance[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 57-67.

    Google Scholar

    [58] Janssen C, Laube N, Bau M, et al. Fluid regime in faulting deformation of the Waratah Fault Zone, Australia, as inferred from major and minor element analyses and stable isotopic signatures[J]. Tectonophysics, 1998, 294(1-2): 109-130. doi: 10.1016/S0040-1951(98)00127-9

    CrossRef Google Scholar

    [59] Sun Y, An Z. Late Pliocene-Pleistocene changes in mass accumulation rates ofeolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research, 2005, 110: D23101. doi: 10.1029/2005JD006064

    CrossRef Google Scholar

    [60] Wang Y X, Yang J D, Chen J, et al. The Sr and Nd isotopicvariations of the Chinese Loess Plateau during the past 7 Ma: implications for the EastAsian winter monsoon and source areas of loess[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 249: 351-361. doi: 10.1016/j.palaeo.2007.02.010

    CrossRef Google Scholar

    [61] Chen Z, Li G. Evolving sources of eolian detritus on the Chinese Loess Plateausince early Miocene: Tectonic and climatic controls[J]. Earth and Planetary Science Letters, 2013, 371-372: 220-225. doi: 10.1016/j.jpgl.2013.03.044

    CrossRef Google Scholar

    [62] Deckker D P. Airborne dust traffic from Australia in modern and Late Quaternary times[J]. Global and Planetary Change, 2020, 184: 103056. doi: 10.1016/j.gloplacha.2019.103056

    CrossRef Google Scholar

    [63] Bloomer S H, Hawkins J W. Petrology and geochemistry of boninite seriesvolcanic rocks from the Mariana Trench[J]. Contributions to Mineralogy and Petrology, 1987, 97: 361-377. doi: 10.1007/BF00371999

    CrossRef Google Scholar

    [64] Brounce M N, Kelley K A, Cottrell E. Variations in Fe3+ /ΣFe of Mariana arcbasalts and mantle wedgeƒO2[J]. Journal of Petrology, 2014, 55(12): 2513-2536. doi: 10.1093/petrology/egu065

    CrossRef Google Scholar

    [65] Fryer P B, Sinton J M, Philpotts J A. Basaltic glasses from the Mariana Trough [C]//Initial Reports of the Deep Sea Drilling Project, 60. Washington: US Government Printing Office, 1981: 601-609.

    Google Scholar

    [66] Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in thesouthern Mariana Trough back-arc basin[J]. Geochimica et Cosmochimica Acta, 1996, 60: 2153-2166. doi: 10.1016/0016-7037(96)00078-6

    CrossRef Google Scholar

    [67] Gribble R F, Stern R J, Newman S, et al. Chemical andisotopic composition of lavas from the northern Mariana Trough: implications formagmagenesis in back-arc basins[J]. Journal of Petrology, 1998, 39: 125-154. doi: 10.1093/petroj/39.1.125

    CrossRef Google Scholar

    [68] Hart S R, Glassley W E, Karig D E. Basalts and sea foor spreading behind theMariana island arc[J]. Earth and Planetary Science Letters, 1972, 15: 12-18. doi: 10.1016/0012-821X(72)90023-4

    CrossRef Google Scholar

    [69] Hawkins J W, Lonsdale P F, Macdougall J D, et al. Petrology of theaxial ridge of the Mariana Trough back-arc spreading center[J]. Earth and Planetary Science Letters, 1990, 100: 226-250. doi: 10.1016/0012-821X(90)90187-3

    CrossRef Google Scholar

    [70] Lonsdale P, Hawkins, J. Silicic volcanism at an of-axis geothermal feld inthe Mariana Trough back-arc basin[J]. Geological Society of America Bulletin, 1985, 96: 940-951. doi: 10.1130/0016-7606(1985)96<940:SVAAOG>2.0.CO;2

    CrossRef Google Scholar

    [71] Mattey D P, Marsh N G, Tarney J. The geochemistry, mineralogy and petrologyof basalts from the west Philippine and Parece Vela Basins and from the Palau-Kyushuand West Mariana Ridges, deep sea drilling Project Leg 59[C]//Initial Reports of the Deep Sea Drilling Project, 59. Washington: US Government Printing Office, 1981: 753-802.

    Google Scholar

    [72] Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of theMariana arc-basin system: implications for the nature and distribution of subduction components[J]. Geochemistry Geophysics Geosystems, 2005, 6(7): 542-557.

    Google Scholar

    [73] Reagan M K, Meijer A. Geology and geochemistry of early arc-volcanic rocksfrom Guam[J]. Geological Society of America Bulletin, 1984, 95: 701-713. doi: 10.1130/0016-7606(1984)95<701:GAGOEA>2.0.CO;2

    CrossRef Google Scholar

    [74] Sinton J M, Fryer P B. Mariana Trough lavas from 18°N: implications for theorigin of back arc basin basalts[J]. Journal of Geophysical Research, 1987, B92: 12782-12802.

    Google Scholar

    [75] Stern R J, Morris J D, Bloomer S M, et al. The source of the sub-duction component in convergent margin magmas: trace element and radiogenicisotope evidence from Eocene boninites, Mariana forearc[J]. Geochimica et Cosmochimica Acta, 1991, 55: 1467-1481. doi: 10.1016/0016-7037(91)90321-U

    CrossRef Google Scholar

    [76] Stern R J, Tamura Y, Masuda H, et al. How the Mariana volcanic arc ends in the south[J]. Island Arc, 2013, 22: 133-148. doi: 10.1111/iar.12008

    CrossRef Google Scholar

    [77] Straub S M. Contrasting compositions of Mariana Trough fallout tephra and Mariana island arc volcanics: a fractional crystallization link[J]. Bulletin of Volcanology, 1995, 57: 403-421. doi: 10.1007/BF00300985

    CrossRef Google Scholar

    [78] Straub S M. Multiple sources of quaternary tephra layers in the Mariana Trough[J]. Journal of Volcanology and Geothermal Research, 1997, 76: 251-276. doi: 10.1016/S0377-0273(96)00075-3

    CrossRef Google Scholar

    [79] Volpe A M, Macdougall J D, Hawkins J W. Mariana Trough basalts (MTB) traceelement and Sr-Nd isotopic evidence for mixing between MORB-like and Arc-likemelts[J]. Earth and Planetary Science Letters, 1987, 82: 241-254. doi: 10.1016/0012-821X(87)90199-3

    CrossRef Google Scholar

    [80] Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: evidence for heterogeneity and arecycled component in backarc basin mantle[J]. Earth And Planetary Science Letters, 1990, 100: 251-264. doi: 10.1016/0012-821X(90)90188-4

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(1103) PDF downloads(43) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint