2023 Vol. 43, No. 6
Article Contents

LI Xuelin, HUANG Lei, GUO Xudong, WU Gang, WU Shiguo, CHEN Wanli, SUN Yue, CHEN Junjin. Sequence stratigraphic and evolution of the Ganquan platform in Xisha area, South China Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 122-130. doi: 10.16562/j.cnki.0256-1492.2023021404
Citation: LI Xuelin, HUANG Lei, GUO Xudong, WU Gang, WU Shiguo, CHEN Wanli, SUN Yue, CHEN Junjin. Sequence stratigraphic and evolution of the Ganquan platform in Xisha area, South China Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 122-130. doi: 10.16562/j.cnki.0256-1492.2023021404

Sequence stratigraphic and evolution of the Ganquan platform in Xisha area, South China Sea

More Information
  • The Ganquan Platform is a typical submerged carbonate platform in the Xisha Island, South China Sea. To unravel the architecture and development of the platform, two-dimensional multi-channel seismic data were collected, and the noise reduction was performed to obtain three high-resolution multi-channel seismic profiles. Ten special seismic facies and 4 sequence boundaries were identified on the seismic section, revealing that a 700 m thick carbonate formation was developed in the Ganquan Platform since the early Miocene, and submerged in the Pliocene.Large amounts of gravity flow deposit and contour flow deposit were developed at lower-bottom slope areas. Sedimentary facies in the slope varied with depth, siliceous-carbonate rock clastics were seen in the bottom of the slope, and carbonate rock clastics in the upper slope. The stratigraphic characteristics of the Ganquan platform and the tectonic background of the Xisha region show that the submerged carbonate platform in the Xisha was born at a structural height during the Late Oligocene to the Early Miocene. In the Middle Miocene, the relative sea level rose steadily and thick carbonate platforms were formed. In the Late Miocene, the relative sea level rose rapidly and the northeast monsoon strengthened, announcing the final stage of the carbonate platforms in evolution. In the Pliocene, the relative sea level increased continuously and rapidly. The reef carbonate platform submerged gradually and perished at last.

  • 加载中
  • [1] Riding R. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories [J]. Earth-Science Reviews, 2002, 58(1-2): 163-231. doi: 10.1016/S0012-8252(01)00089-7

    CrossRef Google Scholar

    [2] Wu S G, Zhang X Y, Yang Z, et al. Spatial and temporal evolution of Cenozoic carbonate platforms on the continental margins of the South China Sea: response to opening of the ocean basin [J]. Interpretation, 2016, 4(3): 1A-Y1. doi: 10.1190/INT-2016-0713-FE.1

    CrossRef Google Scholar

    [3] 吴时国, 朱伟林, 马永生. 南海半封闭边缘海碳酸盐台地兴衰史[J]. 海洋地质与第四纪地质, 2018, 38(6):1-17

    Google Scholar

    WU Shiguo, ZHU Weilin, MA Yongsheng. Vicissitude of Cenozoic carbonate platforms in the South China Sea: sedimentation in semi-closed marginal seas [J]. Marine Geology & Quaternary Geology, 2018, 38(6): 1-17.

    Google Scholar

    [4] Zampetti V, Schlager W, Van Konijnenburg J H, et al. Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak, Malaysia [J]. Marine and Petroleum Geology, 2004, 21(5): 517-534. doi: 10.1016/j.marpetgeo.2004.01.006

    CrossRef Google Scholar

    [5] Sattler U, Immenhauser A, Schlager W, et al. Drowning history of a Miocene carbonate platform (Zhujiang Formation, South China Sea) [J]. Sedimentary Geology, 2009, 219(1-4): 318-331. doi: 10.1016/j.sedgeo.2009.06.001

    CrossRef Google Scholar

    [6] Betzler C, Hübscher C, Lindhorst S, et al. Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean) [J]. Geology, 2009, 37(10): 867-870. doi: 10.1130/G25702A.1

    CrossRef Google Scholar

    [7] Steuer S, Franke D, Meresse F, et al. Oligocene–Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 644-657. doi: 10.1016/j.marpetgeo.2013.12.010

    CrossRef Google Scholar

    [8] Betzler C, Eberli G P. Miocene start of modern carbonate platforms [J]. Geology, 2019, 47(8): 771-775. doi: 10.1130/G45994.1

    CrossRef Google Scholar

    [9] 鲁毅, 崔宇驰, 刘新宇, 等. 中国南海西沙碳酸盐岩台地形成过程及控制因素: 来自西科1井的地球化学证据[J]. 古地理学报, 2020, 22(6):1197-1208

    Google Scholar

    LU Yi, CUI Yuchi, LIU Xinyu, et al. Formation process and controlling factors of carbonate platform in Xisha area, South China Sea: based on geochemical evidences from Well Xike-1 [J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(6): 1197-1208.

    Google Scholar

    [10] 张新元, 吴时国. 西沙海区中新世广乐碳酸盐台地的发育演化及其控制因素[J]. 海洋地质与第四纪地质, 2018, 38(6):159-171

    Google Scholar

    ZHANG Xinyuan, WU Shiguo. Characteristics of Miocene Guangle carbonate platforms in the Xisha area and its evolution [J]. Marine Geology & Quaternary Geology, 2018, 38(6): 159-171.

    Google Scholar

    [11] Burchette T P. Carbonate rocks and petroleum reservoirs: a geological perspective from the industry [J]. Geological Society, London, Special Publications, 2012, 370(1): 17-37. doi: 10.1144/SP370.14

    CrossRef Google Scholar

    [12] 张功成, 米立军, 吴时国, 等. 深水区: 南海北部大陆边缘盆地油气勘探新领域[J]. 石油学报, 2007, 28(2):15-22

    Google Scholar

    ZHANG Gongcheng, MI Lijun, WU Shiguo, et al. Deepwater area: the new prospecting targets of northern continental margin of South China Sea [J]. Acta Petrolei Sinica, 2007, 28(2): 15-22.

    Google Scholar

    [13] 朱伟林, 张功成, 钟锴, 等. 中国南海油气资源前景[J]. 中国工程科学, 2010, 12(5):46-50

    Google Scholar

    ZHU Weilin, ZHANG Gongcheng, ZHONG Kai, et al. South China Sea: oil and gas outlook [J]. Strategic Study of CAE, 2010, 12(5): 46-50.

    Google Scholar

    [14] 许红, 张金川, 蔡峰. 西沙群岛中新世生物礁矿物相研究及其意义[J]. 海洋地质与第四纪地质, 1994, 14(4):15-23

    Google Scholar

    XU Hong, ZHANG Jinchuan, CAI Feng. Study and significance of Miocene biohermal mineral facies in the Xisha islands [J]. Marine Geology & Quaternary Geology, 1994, 14(4): 15-23.

    Google Scholar

    [15] 罗威, 张道军, 刘新宇, 等. 西沙地区西科1井综合地层学研究[J]. 地层学杂志, 2018, 42(4):485-498

    Google Scholar

    LUO Wei, ZHANG Daojun, LIU Xinyu, et al. A comprehensive stratigraphic study of Well XK-1 in the Xisha area [J]. Journal of Stratigraphy, 2018, 42(4): 485-498.

    Google Scholar

    [16] 许红, 蔡峰, 王玉净, 等. 西沙中新世生物礁演化与藻类的造礁作用[J]. 科学通报, 1999, 44(13):1435-1439 doi: 10.3321/j.issn:0023-074X.1999.13.017

    CrossRef Google Scholar

    XU Hong, CAI Feng, WANG Yujing, et al. Miocene reef evolution and algal reef-building in Xisha [J]. Chinese Science Bulletin, 1999, 44(13): 1435-1439. doi: 10.3321/j.issn:0023-074X.1999.13.017

    CrossRef Google Scholar

    [17] Shao L, Li Q Y, Zhu W L, et al. Neogene carbonate platform development in the NW South China Sea: litho-, bio- and chemo-stratigraphic evidence [J]. Marine Geology, 2017, 385: 233-243. doi: 10.1016/j.margeo.2017.01.009

    CrossRef Google Scholar

    [18] Shao L, Cui Y C, Qiao P J, et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 504-516. doi: 10.1016/j.palaeo.2017.07.006

    CrossRef Google Scholar

    [19] Fan T L, Yu K F, Zhao J X, et al. Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea [J]. GSA Bulletin, 2020, 132(3-4): 803-816. doi: 10.1130/B35088.1

    CrossRef Google Scholar

    [20] Wang R, Yu K F, Jones B, et al. Evolution and development of Miocene “island dolostones” on Xisha Islands, South China Sea [J]. Marine Geology, 2018, 406: 142-158. doi: 10.1016/j.margeo.2018.09.006

    CrossRef Google Scholar

    [21] Wu S G, Yang Z, Wang D W, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 350: 71-83. doi: 10.1016/j.margeo.2013.12.016

    CrossRef Google Scholar

    [22] 马玉波, 吴时国, 杜晓慧, 等. 西沙碳酸盐岩建隆发育模式及其主控因素[J]. 海洋地质与第四纪地质, 2011, 31(4):59-67

    Google Scholar

    MA Yubo, WU Shiguo, DU Xiaohui, et al. Evolutionary model and control factors of Xisha carbonate buildup [J]. Marine Geology & Quaternary Geology, 2011, 31(4): 59-67.

    Google Scholar

    [23] Liu Y, Wu S, Li X, et al. Seismic stratigraphy and development of a modern isolated carbonate platform (Xuande Atoll) in the South China Sea [J]. Frontiers in Earth Science, 2023, 10: 1042371. doi: 10.3389/feart.2022.1042371

    CrossRef Google Scholar

    [24] 李学林, 张汉羽, 刘刚, 等. 西沙孤立碳酸盐台地的地震层序及演化模式: 以永乐环礁为例[J]. 海洋地质与第四纪地质, 2020, 40(5):87-96

    Google Scholar

    LI Xuelin, ZHANG Hanyu, LIU Gang, et al. Seismic sequence and evolution model of isolated carbonate platform: a case from Yongle Atoll, Xisha Islands [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 87-96.

    Google Scholar

    [25] 丘学林, 曾钢平, 胥颐, 等. 南海西沙石岛地震台下的地壳结构研究[J]. 地球物理学报, 2006, 49(6):1720-1729 doi: 10.3321/j.issn:0001-5733.2006.06.019

    CrossRef Google Scholar

    QIU Xuelin, ZENG Gangping, XU Yi, et al. The crustal structure beneath the Shidao Station on Xisha Islands of South China Sea [J]. Chinese Journal of Geophysics, 2006, 49(6): 1720-1729. doi: 10.3321/j.issn:0001-5733.2006.06.019

    CrossRef Google Scholar

    [26] 孙嘉诗. 西沙基底形成时代的商榷[J]. 海洋地质与第四纪地质, 1987, 7(4):5-6

    Google Scholar

    SUN Jiashi. A discussion on the formation ages of the bedrock in the Xisha Islands [J]. Marine Geology & Quaternary Geology, 1987, 7(4): 5-6.

    Google Scholar

    [27] Zhu W L, Xie X N, Wang Z F, et al. New insights on the origin of the basement of the Xisha Uplift, South China Sea [J]. Science China Earth Sciences, 2017, 60(12): 2214-2222. doi: 10.1007/s11430-017-9089-9

    CrossRef Google Scholar

    [28] Zhang Y, Yu K F, Fan H D, et al. The basement and volcanic activities of the Xisha Islands: evidence from the kilometre-scale drilling in the northwestern South China Sea [J]. Geological Journal, 2020, 55(1): 571-583. doi: 10.1002/gj.3416

    CrossRef Google Scholar

    [29] Gao J W, Bangs N, Wu S G, et al. Post-seafloor spreading magmatism and associated magmatic hydrothermal systems in the Xisha uplift region, northwestern South China Sea [J]. Basin Research, 2019, 31(4): 688-708. doi: 10.1111/bre.12338

    CrossRef Google Scholar

    [30] Clift P D, Webb A A G. A history of the Asian monsoon and its interactions with solid Earth tectonics in Cenozoic South Asia [J]. Geological Society, London, Special Publications, 2019, 483(1): 631-652. doi: 10.1144/SP483.1

    CrossRef Google Scholar

    [31] 王国忠. 南海珊瑚礁区沉积学[M]. 北京: 海洋出版社, 2001: 78-96

    Google Scholar

    WANG Guozhong. Coral Reefs and Islands[M]. Beijing: China Ocean Press, 2001: 78-96.

    Google Scholar

    [32] 毛明, 王文质, 黄企洲, 等. 南海环流的三维数值模拟[J]. 热带海洋学报, 1992, 11(4):34-41

    Google Scholar

    MAO Ming, WANG Wenzhi, HUANG Qizhou, et al. A three-dimensional numerical simulation of the south china sea circulation [J]. Tropic Oceanology, 1992, 11(4): 34-41.

    Google Scholar

    [33] Qin Y, Wu S, Betzler C. Backstepping patterns of an isolated carbonate platform in the northern South China Sea and its implication for paleoceanography and paleoclimate [J]. Marine and Petroleum Geology, 2022, 146: 105927. doi: 10.1016/j.marpetgeo.2022.105927

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(537) PDF downloads(34) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint