Citation: | LI Feng, DUAN Xiaoyong, HE Xingliang, ZHANG Yuanyuan, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao. Vertical distribution and controlling factors of methane in sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 112-121. doi: 10.16562/j.cnki.0256-1492.2022091402 |
A large amount of methane is trapped in the sediments of estuarine delta. As a factor of greenhouse gas and a marine geological hazard, the occurrence features of methane in marine sediments can provide theoretical support for shallow gas prevention measures and eco-environmental effects. Based on the test results and geochemical parameters of cores YS3, YS4, YS6, and YS7 in Hangzhou Bay, the methane vertical distribution and the controlling factors were studied. We found one layer of methane gas in 1.5~22.5 mbsf in YS3 and 8~42 mbsf in YS6, and two layers of methane gas in 5~11 mbsf in YS4 and 23~47 mbsf in YS7. Methane in each core was buried in silt and clay-dominated sedimentary layers; the highest contents of CH4 in the YS3, YS4, YS6, and YS7 cores were 5.66 mM, 1.73 mM, 1.96 mM, and 2.12 mM, respectively, and generated through CO2/H2 reduction pathway. The diffusion migration and anaerobic oxidation of methane reached a dynamic equilibrium in the in-situ marine sediment layer. Sediment porosity, clay content, and organic carbon content were important influencing factors on the contents, distribution layers, buried depth, and thickness of methane in the Hangzhou Bay marine sediments.
[1] | Cicerone R J, Oremland R S. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochemical Cycles, 1988, 2(4): 299-327. doi: 10.1029/GB002i004p00299 |
[2] | Oremland R S, Marsh L M, Polcin S. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments [J]. Nature, 1982, 296(5853): 143-145. doi: 10.1038/296143a0 |
[3] | Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v |
[4] | Niu M Y, Liang W Y, Wang F P. Methane biotransformation in the ocean and its effects on climate change: a review [J]. Science China Earth Sciences, 2018, 61(12): 1697-1713. doi: 10.1007/s11430-017-9299-4 |
[5] | Xu F L, Ji Z Q, Wang K, et al. The distribution of sedimentary organic matter and implication of its transfer from Changjiang Estuary to Hangzhou Bay, China [J]. Open Journal of Marine Science, 2016, 6(1): 103-114. doi: 10.4236/ojms.2016.61010 |
[6] | Yuan H W, Chen J F, Ye Y, et al. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay [J]. Journal of Marine Systems, 2017, 174: 78-88. doi: 10.1016/j.jmarsys.2017.06.001 |
[7] | 李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008: 543-545 LI Jiabiao. Regional Geology of East China Sea[M]. Beijing: China Ocean Press, 2008: 543-545. |
[8] | Ni Y Y, Dai J X, Zou C N, et al. Geochemical characteristics of biogenic gases in China [J]. International Journal of Coal Geology, 2013, 113: 76-87. doi: 10.1016/j.coal.2012.07.003 |
[9] | 曲长伟. 杭州湾地区超浅层生物气成藏地质条件研究[D]. 南京大学硕士学位论文, 2014 QU Changwei. Study on geological conditions of ultra-shallow biogas accumulation in Hangzhou Bay area[D]. Master Dissertation of Nanjing University, 2014. |
[10] | 陈少平, 孙家振, 沈传波, 等. 杭州湾地区浅层气成藏条件分析[J]. 海洋地质与第四纪地质, 2004, 24(2):85-88 doi: 10.16562/j.cnki.0256-1492.2004.02.014 CHEN Shaoping, SUN Jiazhen, SHEN Chuanbo, et al. Reservoir formation condition of shallow gas in the area of the Hangzhou Bay [J]. Marine Geology & Quaternary Geology, 2004, 24(2): 85-88. doi: 10.16562/j.cnki.0256-1492.2004.02.014 |
[11] | 柴小平, 胡宝兰, 魏娜, 等. 杭州湾及邻近海域表层沉积物重金属的分布、来源及评价[J]. 环境科学学报, 2015, 35(12):3906-3916 doi: 10.13671/j.hjkxxb.2015.0138 CHAI Xiaoping, HU Baolan, WEI Na, et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 3906-3916. doi: 10.13671/j.hjkxxb.2015.0138 |
[12] | 夏小明, 杨辉, 李炎, 等. 长江口-杭州湾毗连海区的现代沉积速率[J]. 沉积学报, 2004, 22(1):130-135 doi: 10.3969/j.issn.1000-0550.2004.01.020 XIA Xiaoming, YANG Hui, LI Yan, et al. Modern sedimentation rates in the contiguous sea area of Changjiang Estuary and Hangzhou Bay [J]. Acta Sedimentologica Sinica, 2004, 22(1): 130-135. doi: 10.3969/j.issn.1000-0550.2004.01.020 |
[13] | 王昆山, 金秉福, 石学法, 等. 杭州湾表层沉积物碎屑矿物分布及物质来源[J]. 海洋科学进展, 2013, 31(1):95-104 doi: 10.3969/j.issn.1671-6647.2013.01.011 WANG Kunshan, JIN Bingfu, SHI Xuefa, et al. Distribution and provenance of the surface sediment of the Hangzhou Bay deduced from detrital minerals [J]. Advances in Marine Science, 2013, 31(1): 95-104. doi: 10.3969/j.issn.1671-6647.2013.01.011 |
[14] | 胡新强, 顾兆峰, 张训华, 等. 长江口外海域浅层气地震反射形态特征及分布[J]. 海洋地质与第四纪地质, 2016, 36(1):151-157 HU Xinqiang, GU Zhaofeng, ZHANG Xunhua, et al. Seismic shape features and distribution of shallow gas in the sea area off the Yangtze River Estuary [J]. Marine Geology & Quaternary Geology, 2016, 36(1): 151-157. |
[15] | 贺行良, 夏宁, 刘昌岭, 等. FID/TCD并联气相色谱法测定天然气水合物的气体组成[J]. 分析测试学报, 2012, 31(2):206-210 doi: 10.3969/j.issn.1004-4957.2012.02.017 HE Xingliang, XIA Ning, LIU Changling, et al. Compositional analysis of gases in natural gas hydrates by GC-FID/TCD [J]. Journal of Instrumental Analysis, 2012, 31(2): 206-210. doi: 10.3969/j.issn.1004-4957.2012.02.017 |
[16] | 贺行良, 刘昌岭, 王江涛, 等. 气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素[J]. 岩矿测试, 2012, 31(1):154-158 doi: 10.3969/j.issn.0254-5357.2012.01.021 HE Xingliang, LIU Changling, WANG Jiangtao, et al. Measurement of carbon and hydrogen isotopes of natural gas hydrate-bound gases by gas chromatography-isotope ratio mass spectrometry [J]. Rock and Mineral Analysis, 2012, 31(1): 154-158. doi: 10.3969/j.issn.0254-5357.2012.01.021 |
[17] | Lin C M, Gu L X, Li G Y, et al. Geology and formation mechanism of late Quaternary shallow biogenic gas reservoirs in the Hangzhou Bay area, eastern China [J]. AAPG Bulletin, 2004, 88(5): 613-625. doi: 10.1306/01070403038 |
[18] | Zhang X, Lin C M. Characteristics and accumulation model of the late Quaternary shallow biogenic gas in the modern Changjiang delta area, eastern China [J]. Petroleum Science, 2017, 14(2): 261-275. doi: 10.1007/s12182-017-0157-2 |
[19] | 王建华, 周洋, 郑卓, 等. 杭州湾晚第四纪沉积与古环境演变[J]. 古地理学报, 2006, 8(4):551-558 doi: 10.3969/j.issn.1671-1505.2006.04.012 WANG Jianhua, ZHOU Yang, ZHENG Zhuo, et al. Late Quaternary sediments and paleoenvironmental evolution in Hangzhou Bay [J]. Journal of Palaeogeography, 2006, 8(4): 551-558. doi: 10.3969/j.issn.1671-1505.2006.04.012 |
[20] | Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3 |
[21] | Choi J, Kim J H, Torres M E, et al. Gas origin and migration in the Ulleung Basin, East Sea: results from the second Ulleung Basin gas hydrate drilling expedition (UBGH2) [J]. Marine and Petroleum Geology, 2013, 47: 113-124. doi: 10.1016/j.marpetgeo.2013.05.022 |
[22] | Rodrigues L F, Ketzer J M, Oliveira R R, et al. Molecular and isotopic composition of hydrate-bound, dissolved and free gases in the amazon deep-sea fan and slope sediments, brazil [J]. Geosciences, 2019, 9(2): 73. doi: 10.3390/geosciences9020073 |
[23] | Pohlman J W, Bauer J E, Canuel E A, et al. Methane sources in gas hydrate-bearing cold seeps: evidence from radiocarbon and stable isotopes [J]. Marine Chemistry, 2009, 115(1-2): 102-109. doi: 10.1016/j.marchem.2009.07.001 |
[24] | Zhang G B, Ji Y, Ma J, et al. Pathway of CH4 production, fraction of CH4 oxidized, and 13C isotope fractionation in a straw-incorporated rice field [J]. Biogeosciences, 2013, 10(5): 3375-3389. doi: 10.5194/bg-10-3375-2013 |
[25] | 沈平, 王晓锋, 徐茵, 等. 我国生物气藏碳、氢同位素特征、形成途径及意义[J]. 沉积学报, 2010, 28(1):183-187,207 SHEN Ping, WANG Xiaofeng, XU Yin, et al. Carbon and Hydrogen Isotopic Compositions: generation pathway of bacterial gas in China [J]. Acta Sedimentologica Sinica, 2010, 28(1): 183-187,207. |
[26] | 张志忠, 邹亮, 周良勇. 舟山北部海域海底第四系淡水资源赋存潜力[J]. 海洋学报, 2018, 40(3):50-61 ZHANG Zhizhong, ZOU Liang, ZHOU Liangyong. Occurrence potential study on submarine Quaternary freshwater resources in the north Zhoushan sea area [J]. Haiyang Xuebao, 2018, 40(3): 50-61. |
[27] | Rayleigh L. L. Theoretical considerations respecting the separation of gases by diffusion and similar processes [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1896, 42(259): 493-498. doi: 10.1080/14786449608620944 |
[28] | Yoshinaga M Y, Holler T, Goldhammer T, et al. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane [J]. Nature Geoscience, 2014, 7(3): 190-194. doi: 10.1038/ngeo2069 |
[29] | Beulig F, Røy H, McGlynn S E, et al. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea [J]. The ISME Journal, 2019, 13(2): 250-262. doi: 10.1038/s41396-018-0273-z |
[30] | 贺行良, 谭丽菊, 段晓勇, 等. 杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质, 2020, 40(3):51-60 HE Xingliang, TAN Lijv, DUAN Xiaoyong, et al. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60. |
[31] | 李萍, 杜军, 刘乐军, 等. 我国近海海底浅层气分布特征[J]. 中国地质灾害与防治学报, 2010, 21(1):69-74 doi: 10.3969/j.issn.1003-8035.2010.01.015 LI Ping, DU Jun, LIU Lejun, et al. Distribution characteristics of the shallow gas in Chinese offshore seabed [J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(1): 69-74. doi: 10.3969/j.issn.1003-8035.2010.01.015 |
[32] | 冯旭东, 林春明, 张霞, 等. 长江三角洲启东地区全新统气源岩有机地球化学特征及生物气形成的控制因素[J]. 高校地质学报, 2017, 23(4):725-736 doi: 10.16108/j.issn1006-7493.2017068 FENG Xudong, LIN Chunming, ZHANG Xia, et al. Organic geochemistry of the Holocene gas-generating source rocks and controlling factors of shallow-biogenic gas in the Qidong Area, Yangtze River Delta [J]. Geological Journal of China Universities, 2017, 23(4): 725-736. doi: 10.16108/j.issn1006-7493.2017068 |
Study area and coring stations in Hangzhou Bay
The vertical changes of CH4 content in four sediment cores
The relationship between δ13C and δD of CH4 in four sediment cores
The relationship between δ
The vertical changes of δ
Correlation between sediments organic carbon and CH4 distribution
Correlation between sediment porosity and CH4 distribution
Correlation between sediment grain size and CH4 distribution