2023 Vol. 43, No. 2
Article Contents

ZHENG Chang, JIN Xiaobo, LIU Chuanlian. Origin and content of alkenone of the Early Miocene marine sediments from IODP U1501 in the South China Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 128-135. doi: 10.16562/j.cnki.0256-1492.2022110102
Citation: ZHENG Chang, JIN Xiaobo, LIU Chuanlian. Origin and content of alkenone of the Early Miocene marine sediments from IODP U1501 in the South China Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 128-135. doi: 10.16562/j.cnki.0256-1492.2022110102

Origin and content of alkenone of the Early Miocene marine sediments from IODP U1501 in the South China Sea

More Information
  • Alkenones are ubiquitous in ocean sediments and have been widely used in paleoceanography and paleoclimatology. Alkenones can be used to reconstruct the CO2 concentration of seawater in geological history, which is key to understanding the mechanism of climate evolution and predicting future climate change. In modern open ocean environments, the main producers of alkenones are Noelaerhabdaceae, including the calcifying haptophytes (coccolithophores) Emiliania huxleyi and Gephyrocapsa spp. It is generally believed that the most reliable producers of alkenones in the Cenozoic marine sediments belong to genus Reticulofenestra of Family Noelaerhabdaceae. By comparing the absolute abundance of coccoliths and alkenones in the Early Miocene sediments at IODP Site U1501 in the South China Sea, it is found that the abundance of Cyclicargolithus spp. coccoliths and alkenones are well correlated (r=0.44, p<0.01). Therefore, we believe that Cyclicargolithus spp. is the main producer of alkenones in the Early Miocene, followed by Reticulofenestra spp. In addition, we measured the coccolith length of each species and estimate the diameter of coccolithophores cells. We inferred that the high contribution of Cyclicargolithus spp. to alkenones is due to its larger cell diameter. Our finding is helpful to evaluate the feasibility of using carbon isotope fractionation to reconstruct the atmospheric CO2 concentration in geological history.

  • 加载中
  • [1] Marlowe I T, Brassell S C, Eglinton G, et al. , Long chain unsaturated ketones and esters in living algae and marine sediments [J], Organic Geochemistry, 1984, 6(1): 135-141.

    Google Scholar

    [2] Volkman J K, Barrerr S M, Blackburn S I, et al. , Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate [J], Geochimica Et Cosmochimica Acta, 1995, 59(3): 513-520.

    Google Scholar

    [3] Volkman J K, Eglnton G, Corner E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi [J]. Phytochemistr, 1980, 19(12): 2619-2622. doi: 10.1016/S0031-9422(00)83930-8

    CrossRef Google Scholar

    [4] Marlowe I T, Brassell S C, Eglinton G, et al. , Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments [J], Chemical Geology, 1990, 88(3): 349-375.

    Google Scholar

    [5] Brassell S C, Eglinton G, Marlowe I T, et al. , Molecular stratigraphy: a new tool for climatic assessment [J], Nature, 1986, 320(6058): 129-133.

    Google Scholar

    [6] Jasper J and Hayes J, A carbon isotope record of CO2 level during the late Quaternary [J], Nature, 1990, 347(6292): 462-4.

    Google Scholar

    [7] Eglinton G, Stuart B, Antoni R, et al. , Molecular record of secular sea surface temperature changes on 100-year timescales for glacial terminations I, II and IV [J], Nature, 1992, 356(6368): 423-426.

    Google Scholar

    [8] Bard E, Frauke R and Corinne S, Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry [J], Nature, 1997, 385(6618): 707-710.

    Google Scholar

    [9] Cacho I, Joan O G, Carles P, et al. , Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures [J], Paleoceanography, 1999, 14(6): 698-705.

    Google Scholar

    [10] Bolton C, Kira L, Samantha G, et al. , Glacial–interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones [J], Earth and Planetary Science Letters, 2010, 295(3-4): 401-411.

    Google Scholar

    [11] Prahl F G and Wakeham S G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment [J], Nature, 1987, 330(6146): 367-369.

    Google Scholar

    [12] Müller P J. , Kirst G, Ruhland G, et al. , Calibration of the alkenone paleotemperature index UK37′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) [J], Geochimica et Cosmochimica Acta, 1998, 62(10): 1757-1772.

    Google Scholar

    [13] Eltgroth M L, Watwood R L and Wolfe G V. Production and cellular localization of neutral long-chain lipids in the Haptophyte algae Isochrysis galbana and Emiliania huxleyi [J], Journal of Phycology, 2005, 41(5): 1000-1009.

    Google Scholar

    [14] Pahnke K and Sachs J P. Sea surface temperatures of southern midlatitudes 0–160 kyr B. P [J], Paleoceanography, 2006, 21(2): 1-17.

    Google Scholar

    [15] Jasper J, Hayes J, Mix A, et al. , Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255 000 years [J], Paleoceanography, 1994, 9(6): 781-98.

    Google Scholar

    [16] Bidigare R R, Fluegge A, Freeman K H, et al. , Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae [J], Global Biogeochemical Cycles, 1997, 11(2): 279-292.

    Google Scholar

    [17] Pagani M, Arthur M A and Freeman K H. Miocene evolution of atmospheric carbon dioxide [J], Paleoceanography, 1999, 14(3): 273-292.

    Google Scholar

    [18] Pagani M. The alkenone-CO2 proxy and ancient atmospheric carbon dioxide [J], Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2002, 360(1793): 609-632.

    Google Scholar

    [19] Henderiks J and Mark P. Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records [J], Paleoceanography, 2007, 22(3): 324-329.

    Google Scholar

    [20] Seki O, Foster G L, Schmidt D N, et al. , Alkenone and boron-based Pliocene pCO2 records [J], Earth and Planetary Science Letters, 2010, 292(1-2): 201-211.

    Google Scholar

    [21] Farrimond P, Eglinton G and Brassell S C. Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic [J], Organic Geochemistry, 1986, 10(4-6): 897-903.

    Google Scholar

    [22] Brassell S C and Mirela D. Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific [J], Organic Geochemistry, 2004, 35(2): 181-188.

    Google Scholar

    [23] Plancq J, Grossi V, Henderiks J, et al. , Alkenone producers during late Oligocene–early Miocene revisited [J], Paleoceanography, 2012, 27(1): PA1202.

    Google Scholar

    [24] Luo Y. et al., Invariance of the carbonate chemistry of the South China Sea from the glacial period to the Holocene and its implications to the Pacific Ocean carbonate system [J]. Earth Planet. Sci. Lett., 2018, 492(1): 112-120.

    Google Scholar

    [25] Jian Z M, Jin H Y, Kaminski M A, et al. , Discovery of the marine Eocene in the northern South China Sea [J], National Science Review, 2019, 6(5): 881-885.

    Google Scholar

    [26] Henderiks J and Mark P. Coccolithophore cell size and the Paleogene decline in atmospheric CO2 [J], Earth and Planetary Science Letters, 2008, 269(3-4): 576-584.

    Google Scholar

    [27] Young J. Size variation of Neogene Reticulofenestra coccoliths from Indian Ocean DSDP Cores [J], Journal of Micropalaeontology, 1990, 9(1): 71-85.

    Google Scholar

    [28] Aubry M. Paleogene calcareous nannofossil stratigraphy of ODP Leg 120 sites [J], PANGAEA , 1992, 120(1): 471-491.

    Google Scholar

    [29] Beaufort L L. Size Variations in Late Miocene Reticulofenestra and implication for paleo climatic interpretation [J], Memorie di Scienze Geologiche, 1992, 43(1): 339-350.

    Google Scholar

    [30] Tappan H N. The Paleobiology of Plant Protists [J]. Geologiska Fö reningeni Stockholm Fö rhandlingar, 1980, 104(2): 156.

    Google Scholar

    [31] Perch-Nielsen K. Morphological Description of Calcareous Nannofossils Assemblage of a Middle-Miocene to Late-Miocene Section in the Niger-Delta, Nigeria [J]. Open Journal of Geology, 1985, 8(9): 427-554.

    Google Scholar

    [32] Young, J. R. , Bown P. R. , Lees J. A. , 2022, Nannotax3 website. International Nannoplankton Association. Accessed 21 Apr. 2022. URL: www. mikrotax. org/Nannotax3

    Google Scholar

    [33] Bordiga M, Bartol M and Henderiks J. Absolute nannofossil abundance estimates: Quantifying the pros and cons of different techniques [J], Revue de Micropaléontologie, 2015, 58(3): 155-165.

    Google Scholar

    [34] Šupraha L and Henderiks J. A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications [J], Biogeosciences, 2020, 17(11): 2955-2969.

    Google Scholar

    [35] Prahl F G, Wakeham S G. Calibration of unsaturation patterns in long-chain ketone compositions for paleo temperature assessment [J]. Nature, 1987, 330(6146): 367-369. doi: 10.1038/330367a0

    CrossRef Google Scholar

    [36] Brassell S C, Climatic influences on the Paleogene evolution of alkenones [J], Paleoceanography, 2014, 29(3): 255-272.

    Google Scholar

    [37] Barnes P J, Brassell S C, Comet P, et al. , Preliminary lipid analyses of Core Sections 18, 24 and 30 from Hole 402A [J]. Init. Rep. Deep Sea Drill. Proj, 1979, 48(1): 965-976.

    Google Scholar

    [38] Nicole R. Marshall, Anne de Vernal, Alfonso Mucci, Markus Kienast, Alexandra Filippova, Claude Hillaire-Marcel, Carbonate dissolution and environmental parameters govern coccolith vs. alkenone abundances in surface sediments from the northwest North Atlantic [J], Marine Micropaleontology, 2021, 169(4): 102032

    Google Scholar

    [39] 王乙晶, 金海燕, 翦知湣, 徐娟. 南海北部晚渐新世与早中新世之交T60构造运动的古水深响应[J]. 海洋学报, 2021, 43(5):79-87

    Google Scholar

    Wang yijing, Jin Haiyan, Jian Zhimin, et al. The response of paleo-water depth to T60 tectonic movement in the northern South China Sea during the late Oligocene to early Miocene [J]. Haiyang Xuebao, 2021, 43(5): 79-87.

    Google Scholar

    [40] Zachos, J. , Pagani, M., Sloan, L., Thomas, E., and Billups, K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [41] Kameo K and Toshiaki T, Biostratigraphic significance of sequential size variations of the calcareous nannofossil genus Reticulofenestra in the Upper Pliocene of the North Atlantic [J], Marine Micropaleontology, 1999, 37(1): 41-52.

    Google Scholar

    [42] Backman J and Hermelin J O R, Morphometry of the Eocene nannofossil Reticulofenestra umbilicus lineage and its biochronological consequences [J], Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 57(1): 103-116.

    Google Scholar

    [43] Laws E A. , Popp B N, Bidigare R R, et al. , Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results [J], Geochimica et Cosmochimica Acta, 1995, 59(6): 1131-1138.

    Google Scholar

    [44] Popp B N, Laws E A, Bidigare R R, et al. , Effect of Phytoplankton Cell Geometry on Carbon Isotopic Fractionation [J], Geochimica et Cosmochimica Acta, 1998, 62(1): 69-77.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(963) PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint