Citation: | ZUO Hanqiong, LIU Sheng, WANG Yang, GUO Yiqun, WANG Wanhu, WANG Yang. Comprehensive assessment of disaster geological risk in Shantou coastal waters in eastern Guangdong[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 119-127. doi: 10.16562/j.cnki.0256-1492.2022072101 |
The geological and geophysical data in the coastal area of Shantou, eastern Guangdong were interpreted and analyzed for geohazard assessment. Results show that there are mainly active faults, buried ancient rivers, shallow gas, and irregular shallow bedrock in this area. The geohazard was quantitatively assessed by using the analytic hierarchy process and fuzzy mathematics method. A risk assessment system was built, in which faults, buried ancient rivers, shallow gas, and shallow bedrock were used as assessment indicators, and different weights of them were assigned. According to the principle of maximum membership degree, risk levels of different blocks of the study area were calculated from which five risk levels were divided: very low, low, medium, high, and very high. More than 70% of the study area was in low risk, and the high-risk area was distributed in the Rongjiang River outer estuary and the southern part of Haimen Bay, affected mainly by buried ancient rivers and faults. The engineering geological conditions in the high, and very-high risk areas are poor due to unstable geological setting that should be avoided for site selection. The assessment results are consistent with known distribution of geohazards in the coastal waters of Shantou, indicating that the assessment method is reasonable and feasible, and shall have reference values for future development and disaster prevention in sea areas.
[1] | 马胜中. 北部湾广西近岸海洋地质灾害类型及分布规律[D]. 中国地质大学(北京)硕士学位论文, 2011 MA Shengzhong. Marine geological disaster factors in Beibu Gulf inshore of Guangxi Province[D]. Master Dissertation of China University of Geosciences (Beijing), 2011. |
[2] | Carpenter G B, Mccarthy J C. Hazards analysis on the Atlantic outer continental shelf[C]//Proceedings of the Annual Offshore Technology Conference. Houston: OTC, 1980: 419-424. |
[3] | 李平. 黄河三角洲近岸海底浅表层典型灾害地质类型发育机制及其分区[D]. 中国海洋大学博士学位论文, 2015 LI Ping. Formation mechanism of typical geological hazards and division in the seabed surface and sub-bottom of the yellow river delta inshore[D]. Doctor Dissertation of Ocean University of China, 2015. |
[4] | 刘守全, 刘锡清, 王圣洁, 等. 南海灾害地质类型及分区[J]. 中国地质灾害与防治学报, 2000, 11(4):39-44 doi: 10.3969/j.issn.1003-8035.2000.04.009 LIU Shouquan, LIU Xiqing, WHANG Shengjie, et al. Kinds of hazardous geology and division in South China Sea [J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(4): 39-44. doi: 10.3969/j.issn.1003-8035.2000.04.009 |
[5] | 陈俊仁, 李廷桓. 南海地质灾害类型与分布规律[J]. 地质学报, 1993, 67(1):76-85 CHEN Junren, LI Tinghuan. Types and distribution of geological hazards in the South China Sea [J]. Acta Geologica Sinica, 1993, 67(1): 76-85. |
[6] | 张虎男, 陈伟光, 黄坤荣, 等. 华南沿海新构造运动与地质环境[M]. 北京: 地震出版社, 1990: 262-264 ZHANG Hu’nan, CHEN Weiguang, HUANG Kunrong, et al. Neotectonics and Geological Settings of the South China Coasts[M]. Beijing: Seismological Press, 1990: 262-264. |
[7] | 张虎男. 南海地震活动与区域稳定性评价[M]. 北京: 科学出版社, 2002: 456-493 ZHANG Hu’nan. Seismicity and Regional Stability Evaluation of South China Sea[M]. Beijing: Science Press, 2002: 456-493. |
[8] | 詹文欢, 钟建强, 刘以宣. 华南沿海地质灾害[M]. 北京: 科学出版社, 1996: 24-71 ZHAN Wenhuan, ZHONG Jianqiang, LIU Yixuan. Geological Hazards of South China Coast[M]. Beijing: Science Press, 1996: 24-71. |
[9] | 詹文欢, 张乔民, 孙宗勋, 等. 南澎列岛及邻近海域地质地貌与灾害地质分析[J]. 热带海洋学报, 2002, 21(1):11-17 doi: 10.3969/j.issn.1009-5470.2002.01.002 ZHAN Wenhuan, ZHANG Qiaomin, SUN Zongxun, et al. Geologic and geomorphologic characteristics and geological hazards of Nanpeng archipelago and adjacent waters, northeastern South China Sea [J]. Journal of the Tropical Oceanography, 2002, 21(1): 11-17. doi: 10.3969/j.issn.1009-5470.2002.01.002 |
[10] | 周英. 汕头市大陆海岸的主要地质灾害[J]. 热带地理, 2008, 28(4):331-337 doi: 10.13284/j.cnki.rddl.001168 ZHOU Ying. Primary geological hazards to the continental coast in Shantou [J]. Tropical Geography, 2008, 28(4): 331-337. doi: 10.13284/j.cnki.rddl.001168 |
[11] | 广东省海岸带和海涂资源综合调查大队. 广东省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1987: 10-108, 140, 379 Guangdong Coast and Coast Resources Survey Team. Comprehensive Investigation Report on Coastal Zone and Marine Resources in Guangdong Province[M]. Beijing: China Ocean Press, 1987: 10-108, 140, 379. |
[12] | 吴正, 黄山, 胡守春, 等. 华南海岸风沙地貌研究[M]. 北京: 科学出版社, 1995: 31-33 WU Zheng, HUANG Shan, HU Shouchun, et al. Research on the Landforms of the Wind-Drift Sand in South China Coast[M]. Beijing: Science Press, 1995: 31-33. |
[13] | 黄镇国, 谢先德, 范锦春, 等. 广东海平面变化及其影响与对策[M]. 广州: 广东科技出版社, 2000 HUANG Zhenguo, XIE Xiande, FAN Jinchun, et al. The Sea Level Change in Guangdong and its Influence and Countermeasures[M]. Guangzhou: Guangdong Science and Technology Press, 2000. |
[14] | 张志忠, 顾兆峰, 刘锡清, 等. 南黄海灾害地质及地质环境演变[J]. 海洋地质与第四纪地质, 2007, 27(5):15-22 doi: 10.16562/j.cnki.0256-1492.2007.05.007 ZHANG Zhizhong, GU Zhaofeng, LIU Xiqing, et al. Hazardous geology and marine geologic environmental evolution in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2007, 27(5): 15-22. doi: 10.16562/j.cnki.0256-1492.2007.05.007 |
[15] | 宋亚娅, 张航泊. 基于加权模糊概率的地质灾害易发性评价模型研究[J]. 人民长江, 2020, 51(11):109-115 doi: 10.16232/j.cnki.1001-4179.2020.11.019 SONG Yaya, ZHANG Hangbo. Study on geological hazards susceptibility assessment based on weighted fuzzy probability exponential model [J]. Yangtze River, 2020, 51(11): 109-115. doi: 10.16232/j.cnki.1001-4179.2020.11.019 |
[16] | 陈哲锋, 吴静, 郭玉斌, 等. 层次分析与模糊数学综合评价法在矿山环境评价中的应用[J]. 华东地质, 2018, 39(4):305-310 CHEN Zhefeng, WU Jing, GUO Yubin, et al. Application of AHP and fuzzy mathematics in comprehensive assessment of mine environment [J]. East China Geology, 2018, 39(4): 305-310. |
[17] | 宋玉鹏, 孙永福, 杜星, 等. 渤海海域海底地质灾害危险性区划[J]. 中国地质灾害与防治学报, 2021, 32(3):140-146 SONG Yupeng, SUN Yongfu, DU Xing, et al. Risk zonation on the submarine geological hazards in Bohai Sea [J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 140-146. |
[18] | 杨康, 薛喜成, 李识博. 信息量融入GA优化SVM模型下的地质灾害易发性评价[J]. 安全与环境工程, 2022, 29(3):109-118 doi: 10.13578/j.cnki.issn.1671-1556.20210976 YANG Kang, XUE Xicheng, LI Shibo. Geological hazard susceptibility assessment by incorporating information value into GA optimized SVM model [J]. Safety and Environmental Engineering, 2022, 29(3): 109-118. doi: 10.13578/j.cnki.issn.1671-1556.20210976 |
[19] | 陈水满, 赵辉龙, 许震, 等. 基于人工神经网络模型的福建南平市滑坡危险性评价[J]. 中国地质灾害与防治学报, 2022, 33(2):133-140 doi: 10.16031/j.cnki.issn.1003-8035.2022.02-16 CHEN Shuiman, ZHAO Huilong, XU Zhen, et al. Landslide risk assessment in Nanping City based on artificial neural networks model [J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 133-140. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-16 |
[20] | 董津城. 发震断裂的安全距离规定简介:《建筑抗震设计规范》修订简介(五)[J]. 工程抗震, 1999, 4(2):14-16 DONG Jincheng. Brief introduction to the stipulations related safety distance from earthquake causative fault [J]. Earthquake Resistant Engineering, 1999, 4(2): 14-16. |
[21] | Lv H, Bao D, Wang Z, et al. Identification and characterization of Karst Ancient Channel based on Seismic Multi-attribute[C]//Proceedings of the SPG/SEG Nanjing 2020 International Geophysical Conference. Nanjing: Editorial Department of Petroleum Geophysical Exploration, 2020: 836-839. |
[22] | Kemp J, Pietsch T, Gontz A, et al. Lacustrine-fluvial interactions in Australia's Riverine Plains [J]. Quaternary Science Reviews, 2017, 166: 352-362. doi: 10.1016/j.quascirev.2017.02.015 |
[23] | Cserkész-Nagy Á, Thamó-Bozsó E, Tóth T, et al. Reconstruction of a Pleistocene meandering river in East Hungary by VHR seismic images, and its climatic implications [J]. Geomorphology, 2012, 153-154: 205-218. doi: 10.1016/j.geomorph.2012.02.025 |
[24] | Li G X, Liu Y, Yang Z G, et al. Ancient Changjiang channel system in the East China Sea continental shelf during the last glaciation [J]. Science in China Series D:Earth Sciences, 2005, 48(11): 1972-1978. doi: 10.1360/04yd0053 |
[25] | Mullins H T, Nagel D K. High-frequency seismic data detect shallow hydrocarbons [J]. World Oil, 1983, 197(6): 133-134,136,138. |
[26] | Boillot G. Géologie de la Manche Occidentale: Fonds Rocheux, Dépôts Quaternaires, Sédiments Actuels[M]. Paris: Masson, 1964. |
[27] | Ren J F, Cheng C, Xiong P F, et al. Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Petroleum Science and Engineering, 2022, 215: 110630. doi: 10.1016/j.petrol.2022.110630 |
[28] | Lei Y N, Sun J, Wang G J. Simulation of shallow gas invasion process during deepwater drilling and its control measures [J]. Journal of Ocean University of China, 2022, 21(3): 707-718. doi: 10.1007/s11802-022-4855-z |
[29] | Marcon L, Sotiri K, Bleninger T, et al. Acoustic mapping of gas stored in sediments of shallow aquatic systems linked to methane production and ebullition patterns [J]. Frontiers in Environmental Science, 2022, 10: 876540. doi: 10.3389/fenvs.2022.876540 |
[30] | 王忆非. 辽东湾北部工程地质条件评价[D]. 国家海洋局第一海洋研究所硕士学位论文, 2014 WANG Yifei. Assessment on engineering geological suitability in northern Liaodong Bay[D]. Master Dissertation of The First Institute of Oceanography, SOA, 2014. |
Distribution of survey lines
Distribution of faults in sea area
Distribution of buried ancient river channels in the study area
Distribution of shallow gas and shallow bedrock in the study area
Distribution of fault offset
Distribution of river burial depth
Distribution of channel thickness
Quantitative value distribution of fault activity period
Assessment results
Single-factor classification of fault distance
Single-factor classification of river burial depth