Citation: | ZHANG Jingyuan, XIAO Wenshen, WANG Rujian, FAN Jiaen, WANG Hanzhang, YANG Ruyi. Changes in productivity and ice-rafting input in the Amundsen Sea during the Late Pleistocene: Implications on the evolution of surface-ocean environment and the West Antarctic Ice Sheet[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 136-144. doi: 10.16562/j.cnki.0256-1492.2023020802 |
The Amundsen Sea is the core area of the melting West Antarctic Ice Sheet (WAIS) in the recent global warming process. Productivity proxies and ice rafted debris (IRD) contents in core ANT34-A5-7 collected from the Amundsen Sea during the 34th Chinese Antarctic Research Expedition were investigated, to reveal the changes of the surface-ocean environment and the evolution history of the WAIS since the MIS (Marine Isotope Stage) 6. Results show increased (decreased) productivity during interglacial (glacial) periods. In particular, the higher productivity level than the Holocene productivity ones during the MIS 5.5 was accompanied by significant WAIS melting. These findings could be interpreted as warmer sea surface, less sea ice, and stronger upwelling of the circum-polar deep water in the Amundsen Sea during the MIS 5.5. This study provided valuable information for predicting future climate changes.
[1] | The IMBIE Team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017 [J]. Nature, 2018, 558(7709): 219-222. doi: 10.1038/s41586-018-0179-y |
[2] | Shepherd A, Fricker H A, Farrell S L. Trends and connections across the Antarctic cryosphere [J]. Nature, 2018, 558(7709): 223-232. doi: 10.1038/s41586-018-0171-6 |
[3] | Mouginot J, Rignot E, Scheuchl B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013 [J]. Geophysical Research Letters, 2014, 41(5): 1576-1584. doi: 10.1002/2013GL059069 |
[4] | Larter R D, Anderson J B, Graham A G C, et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum [J]. Quaternary Science Reviews, 2014, 100: 55-86. doi: 10.1016/j.quascirev.2013.10.016 |
[5] | Joughin I, Alley R B, Holland D M. Ice-sheet response to oceanic forcing [J]. Science, 2012, 338(6111): 1172-1176. doi: 10.1126/science.1226481 |
[6] | Alley K E, Scambos T A, Siegfried M R, et al. Impacts of warm water on Antarctic ice shelf stability through basal channel formation [J]. Nature Geoscience, 2016, 9(4): 290-293. doi: 10.1038/ngeo2675 |
[7] | Holland D M, Nicholls K W, Basinski A. The Southern Ocean and its interaction with the Antarctic Ice Sheet [J]. Science, 2020, 367(6484): 1326-1330. doi: 10.1126/science.aaz5491 |
[8] | Hillenbrand C D, Smith J A, Hodell D A, et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions [J]. Nature, 2017, 547(7661): 43-48. doi: 10.1038/nature22995 |
[9] | Scherer R P, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the West Antarctic ice sheet [J]. Science, 1998, 281(5373): 82-85. doi: 10.1126/science.281.5373.82 |
[10] | Hillenbrand C D, Kuhn G, Frederichs T. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse? [J]. Quaternary Science Reviews, 2009, 28(13-14): 1147-1159. doi: 10.1016/j.quascirev.2008.12.010 |
[11] | Pollard D, DeConto R M. Modelling West Antarctic ice sheet growth and collapse through the past five million years [J]. Nature, 2009, 458(7236): 329-332. doi: 10.1038/nature07809 |
[12] | Hearty P J, Kindler P, Cheng H, et al. A +20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice [J]. Geology, 1999, 27(4): 375-378. doi: 10.1130/0091-7613(1999)027<0375:AMMPSL>2.3.CO;2 |
[13] | Kindler P, Hearty P J. Elevated marine terraces from Eleuthera (Bahamas) and Bermuda: sedimentological, petrographic and geochronological evidence for important deglaciation events during the middle Pleistocene [J]. Global and Planetary Change, 2000, 24(1): 41-58. doi: 10.1016/S0921-8181(99)00068-5 |
[14] | 李永斌, 王汝建, 武力, 等. 南极罗斯海扇区晚更新世以来冰筏碎屑记录反映的冰川动力学史[J]. 第四纪研究, 2021, 41(3):662-677 doi: 10.11928/j.issn.1001-7410.2021.03.04 LI Yongbin, WANG Rujian, WU Li, et al. Glacial dynamics evolutions revealed by ice-rafted detritus record from the Ross Sea Sector of the Southern Ocean since Late Pleistocene [J]. Quaternary Sciences, 2021, 41(3): 662-677. doi: 10.11928/j.issn.1001-7410.2021.03.04 |
[15] | Talley L D, Pickard G L, Emery W J, et al. Descriptive Physical Oceanography: An Introduction[M]. 6th ed. London: Academic Press, 2011. |
[16] | Walker D P, Brandon M A, Jenkins A, et al. Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough [J]. Geophysical Research Letters, 2007, 34(2): L02602. |
[17] | Jacobs S S, Jenkins A, Giulivi C F, et al. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf [J]. Nature Geoscience, 2011, 4(8): 519-523. doi: 10.1038/ngeo1188 |
[18] | Turner J, Orr A, Gudmundsson G H, et al. Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica [J]. Reviews of Geophysics, 2017, 55(1): 235-276. doi: 10.1002/2016RG000532 |
[19] | Jenkins A, Dutrieux P, Jacobs S, et al. Decadal ocean forcing and Antarctic ice sheet response: Lessons from the Amundsen Sea [J]. Oceanography, 2016, 29(4): 106-117. doi: 10.5670/oceanog.2016.103 |
[20] | Parkinson C L, Cavalieri D J. Antarctic sea ice variability and trends, 1979-2010 [J]. Cryosphere, 2012, 6(4): 871-880. doi: 10.5194/tc-6-871-2012 |
[21] | Orsi A H, Whitworth III T, Nowlin Jr W D. On the meridional extent and fronts of the Antarctic circumpolar current [J]. Deep Sea Research Part I:Oceanographic Research Papers, 1995, 42(5): 641-673. doi: 10.1016/0967-0637(95)00021-W |
[22] | Assmann K M, Hellmer H H, Jacobs S S. Amundsen Sea ice production and transport [J]. Journal of Geophysical Research, 2005, 110(C12): C12013. doi: 10.1029/2004JC002797 |
[23] | Lythe M B, Vaughan D G, the BEDMAP Consortium. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica [J]. Journal of Geophysical Research, 2001, 106(B6): 11335-11351. doi: 10.1029/2000JB900449 |
[24] | 鞠梦珊, 陈志华, 赵仁杰, 等. 晚第四纪南极阿蒙森海扇区冰盖与古生产力旋回变化[J]. 海洋学报, 2019, 41(9):40-51 JU Mengshan, CHEN Zhihua, ZHAO Renjie, et al. Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica [J]. Haiyang Xuebao, 2019, 41(9): 40-51. |
[25] | Berkman P A, Forman S L. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean [J]. Geophysical Research Letters, 1996, 23(4): 363-366. doi: 10.1029/96GL00151 |
[26] | Gordon J E, Harkness D D. Magnitude and geographic variation of the radiocarbon content in Antarctic marine life: implications for reservoir corrections in radiocarbon dating [J]. Quaternary Science Reviews, 1992, 11(7-8): 697-708. doi: 10.1016/0277-3791(92)90078-M |
[27] | Domack E, Leventer A, Dunbar R, et al. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic [J]. The Holocene, 2001, 11(1): 1-9. doi: 10.1191/095968301673881493 |
[28] | Stuiver M, Reimer P J. Extended 14C data base and revised Calib 3.0 14C age calibration program [J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904 |
[29] | Heaton T J, Köhler P, Butzin M, et al. Marine20-the marine radiocarbon age calibration curve (0-55, 000 Cal Bp) [J]. Radiocarbon, 2020, 62(4): 779-820. doi: 10.1017/RDC.2020.68 |
[30] | Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7 |
[31] | Xiao W S, Frederichs T, Gersonde R, et al. Constraining the dating of late Quaternary marine sediment records from the Scotia Sea (Southern Ocean) [J]. Quaternary Geochronology, 2016, 31: 97-118. doi: 10.1016/j.quageo.2015.11.003 |
[32] | Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003. |
[33] | Wu L, Wang R J, Xiao W S, et al. Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 260-270. doi: 10.1016/j.palaeo.2017.06.018 |
[34] | Hillenbrand C D, Fütterer D K, Grobe H, et al. No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea [J]. Geo-Marine Letters, 2002, 22(2): 51-59. doi: 10.1007/s00367-002-0097-7 |
[35] | Hillenbrand C D, Moreton S G, Caburlotto A, et al. Volcanic time-markers for Marine Isotopic Stages 6 and 5 in Southern Ocean sediments and Antarctic ice cores: implications for tephra correlations between palaeoclimatic records [J]. Quaternary Science Reviews, 2008, 27(5-6): 518-540. doi: 10.1016/j.quascirev.2007.11.009 |
[36] | Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800, 000 years [J]. Science, 2007, 317(5839): 793-796. doi: 10.1126/science.1141038 |
[37] | Miller K G, Mountain G S, Wright J D, et al. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records [J]. Oceanography, 2011, 24(2): 40-53. doi: 10.5670/oceanog.2011.26 |
[38] | Turney C S M, Fogwill C J, Golledge N R, et al. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(8): 3996-4006. doi: 10.1073/pnas.1902469117 |
[39] | Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present [J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949 |
[40] | Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles [J]. Nature, 2006, 440(7083): 491-496. doi: 10.1038/nature04614 |
[41] | Toyos M H, Lamy F, Lange C B, et al. Antarctic circumpolar current dynamics at the Pacific Entrance to the Drake Passage over the past 1.3 million years [J]. Paleoceanography and Paleoclimatology, 2020, 35(7): e2019PA003773. |
[42] | Anderson R F, Barker S, Fleisher M, et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2014, 372(2019): 20130054. doi: 10.1098/rsta.2013.0054 |
[43] | Stein R. Accumulation of organic carbon in marine sediments[D]. Doctor Dissertation of Universität Giessen, 1991. |
[44] | Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 1994, 114(3-4): 289-302. doi: 10.1016/0009-2541(94)90059-0 |
[45] | Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland [J]. Estuarine, Coastal and Shelf Science, 1994, 38(3): 219-233. doi: 10.1006/ecss.1994.1015 |
[46] | Hillenbrand C D, Grobe H, Diekmann B, et al. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica) - Relation to modern environmental conditions [J]. Marine Geology, 2003, 193(3-4): 253-271. doi: 10.1016/S0025-3227(02)00659-X |
[47] | Diekmann B. Sedimentary patterns in the late Quaternary Southern Ocean [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(21-22): 2350-2366. doi: 10.1016/j.dsr2.2007.07.025 |
[48] | Billups K, York K, Bradtmiller L I. Water column stratification in the Antarctic Zone of the southern ocean during the mid-Pleistocene climate transition [J]. Paleoceanography and Paleoclimatology, 2018, 33(5): 432-442. doi: 10.1029/2018PA003327 |
[49] | Esper O, Gersonde R, Kadagies N. Diatom distribution in southeastern Pacific surface sediments and their relationship to modern environmental variables [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 287(1-4): 1-27. doi: 10.1016/j.palaeo.2009.12.006 |
[50] | Pudsey C J, Howe J A. Quaternary history of the Antarctic Circumpolar Current: evidence from the Scotia Sea [J]. Marine Geology, 1998, 148(1-2): 83-112. doi: 10.1016/S0025-3227(98)00014-0 |
[51] | Chadwick M, Allen C S, Sime L C, et al. Reconstructing Antarctic winter sea-ice extent during Marine isotope Stage 5e [J]. Climate of the Past, 2022, 18(1): 129-146. doi: 10.5194/cp-18-129-2022 |
[52] | Crosta X, Kohfeld K E, Bostock H C, et al. Antarctic sea ice over the past 130 000 years - Part 1: a review of what proxy records tell us [J]. Climate of the Past, 2022, 18(8): 1729-1756. doi: 10.5194/cp-18-1729-2022 |
[53] | Chadwick M, Allen C S, Sime L C, et al. How does the Southern Ocean palaeoenvironment during Marine Isotope Stage 5e compare to the modern? [J]. Marine Micropaleontology, 2022, 170: 102066. doi: 10.1016/j.marmicro.2021.102066 |
[54] | Robinson R S, Sigman D M. Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic [J]. Quaternary Science Reviews, 2008, 27(9-10): 1076-1090. doi: 10.1016/j.quascirev.2008.02.005 |
[55] | Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration [J]. Nature, 2010, 466(7302): 47-55. doi: 10.1038/nature09149 |
[56] | Anderson J B, Shipp S S, Lowe A L, et al. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review [J]. Quaternary Science Reviews, 2002, 21(1-3): 49-70. doi: 10.1016/S0277-3791(01)00083-X |
[57] | Studer A S, Sigman D M, Martínez-García A, et al. Antarctic Zone nutrient conditions during the last two glacial cycles [J]. Paleoceanography, 2015, 30(7): 845-862. doi: 10.1002/2014PA002745 |
[58] | Horn M G, Beucher C P, Robinson R S, et al. Southern ocean nitrogen and silicon dynamics during the last deglaciation [J]. Earth and Planetary Science Letters, 2011, 310(3-4): 334-339. doi: 10.1016/j.jpgl.2011.08.016 |
[59] | Jaccard S L, Hayes C T, Martínez-Garcia A, et al. Two modes of change in southern ocean productivity over the past million years [J]. Science, 2013, 339(6126): 1419-1423. doi: 10.1126/science.1227545 |
[60] | Sigman D M, Fripiat F, Studer A S, et al. The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific [J]. Quaternary Science Reviews, 2021, 254: 106732. doi: 10.1016/j.quascirev.2020.106732 |
[61] | Sigman D M, Boyle E A. Palaeoceanography: Antarctic stratification and glacial CO2 [J]. Nature, 2001, 412(6847): 606. doi: 10.1038/35088132 |
[62] | Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages [J]. Paleoceanography, 2006, 21(2): PA2005. |
[63] | Martínez-García A, Sigman D M, Ren H J, et al. Iron fertilization of the Subantarctic Ocean during the last ice age [J]. Science, 2014, 343(6177): 1347-1350. doi: 10.1126/science.1246848 |
[64] | Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2 [J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441 |
[65] | Wu S Z, Lembke-Jene L, Lamy F, et al. Orbital- and millennial-scale Antarctic Circumpolar Current variability in Drake Passage over the past 140, 000 years [J]. Nature Communications, 2021, 12(1): 3948. doi: 10.1038/s41467-021-24264-9 |
[66] | Gordon A L. Interocean exchange of thermocline water [J]. Journal of Geophysical Research, 1986, 91(C4): 5037-5046. doi: 10.1029/JC091iC04p05037 |
[67] | Dutton A, Carlson A E, Long A J, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods [J]. Science, 2015, 349(6244): aaa4019. doi: 10.1126/science.aaa4019 |
[68] | Dutton A, Lambeck K. Ice volume and sea level during the last interglacial [J]. Science, 2012, 337(6091): 216-219. doi: 10.1126/science.1205749 |
[69] | Bareille G, Grousset F E, Labracherie M, et al. Origin of detrital fluxes in the Southeast Indian Ocean during the last climatic cycles [J]. Paleoceanography, 1994, 9(6): 799-819. doi: 10.1029/94PA01946 |
Site map and the physiography of the Amundsen Sea (AS)
Temperature anomaly of the Antarctic [36], global sea level variation [37], and curve of LR04-δ18O stack of benthic foraminifera [32] in comparison to the XRF-Ca/Al, -Si/Al, the abundances of volcanic glass (VG), and the ice-rafted debris (IRD, >150 μm) contents in core ANT34-A5-7(a), age control points and linear sedimentation rate (LSR) (b)
CO2 concentration [39], temperature anomaly of the Antarctica [36], sea-salt Na+ flux [40], dust record non-sea-salt Ca2+ flux [40] from EDC ice core, and the XRF-Zr/Rb record of core PS97/093-2 from the Drake Passage [41], compared to foraminifera abundance, XRF-Ca/Al, -Si/Al, biogenic opal content, total organic carbon, total nitrogen, C/N ratio, ice-rafted debris (IRD, >150 μm), and magnetic susceptibility (MS) of core A5-7