2023 Vol. 43, No. 3
Article Contents

LIANG Xixing, WANG Riming, DAI Zhijun, WANG Jie, HUANG Hu, LI Shushi. Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 107-118. doi: 10.16562/j.cnki.0256-1492.2022091201
Citation: LIANG Xixing, WANG Riming, DAI Zhijun, WANG Jie, HUANG Hu, LI Shushi. Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 107-118. doi: 10.16562/j.cnki.0256-1492.2022091201

Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea

More Information
  • Estuarine tidal flats generally consist of vegetated wetlands in upper-middle intertidal zones and fringed bare flats in middle-lower intertidal zones. Spatial-temporal variations of bare flats directly regulate geomorphic erosions-accretions and vegetation successions of the whole tidal flats. Based on multi-satellite remote sensing imageries from Landsat 5/8 TM/OLI and Sentinel-2 MSI collections, random forest classification algorithm and Digital Shoreline Analysis System were used to examine the variations and characteristics of bare intertidal flats in the Qinjiang River estuary (QRE), Maowei Sea (MWS) of Beibu Gulf in 1986—2021. Results indicate that, (1) the overall area of bare flats in the QRE has shown obvious losses during the past four decades, which can be divided into four stages: maintained equilibrium of erosion-accumulation between 1986—2002, accumulated rapidly between 2002—2007, declined sharply between 2007—2014 and slowly deposited between 2014—2021. (2) Tidal flat accretions distributed mainly in the secondary Shajing outlet (SJO) and its inner channel of the QRE along the edges of tidal channels, while erosions occurred in the secondary SJO, Shachong outlet (SCO) and inner tidal channels. (3) Dredging projects in the MWS were the direct driven force that triggered the losses of bare intertidal flats in the QRE from 2008 to 2014, and the expansions of intertidal vegetation and weakened hydrodynamics followed by extensive oyster cultivations after 2015 caused seaward progradation of the bare flats. In addition, the modern sea-level rise has not significantly affected the dynamics of bare flats, and the losses were partly due to the reduced riverine suspended sediment load into the MWS. This study provided theoretical and technical supports for the sustainable and efficient utilizations of estuarine tidal flats.

  • 加载中
  • [1] Swales A, Bentley S J, Lovelock C E. Mangrove-forest evolution in a sediment-rich estuarine system: opportunists or agents of geomorphic change? [J]. Earth Surface Processes and Landforms, 2015, 40(12): 1672-1687. doi: 10.1002/esp.3759

    CrossRef Google Scholar

    [2] Davidson N C. How much wetland has the world lost? Long-term and recent trends in global wetland area [J]. Marine and Freshwater Research, 2014, 65(10): 934-941. doi: 10.1071/MF14173

    CrossRef Google Scholar

    [3] 徐彩瑶, 濮励杰, 朱明. 沿海滩涂围垦对生态环境的影响研究进展[J]. 生态学报, 2018, 38(3):1148-1162

    Google Scholar

    XU Caiyao, PU Lijie, ZHU Ming. Effect of reclamation activity on coastal ecological environment: progress and perspectives [J]. Acta Ecologica Sinica, 2018, 38(3): 1148-1162.

    Google Scholar

    [4] Murray N J, Phinn S R, Dewitt M, et al. The global distribution and trajectory of tidal flats [J]. Nature, 2019, 565(7738): 222-225. doi: 10.1038/s41586-018-0805-8

    CrossRef Google Scholar

    [5] 黄梅花, 卢远, 童新华, 等. 基于Landsat影像的茅尾海河口地貌演变研究[J]. 海洋测绘, 2020, 40(6):57-60,65

    Google Scholar

    HUANG Meihua, LU Yuan, TONG Xinhua, et al. Study on the landform evolution of Maowei Sea estuary based on Landsat image [J]. Hydrographic Surveying and Charting, 2020, 40(6): 57-60,65.

    Google Scholar

    [6] Zhu D K, Martini I P, Brookfield M E. Morphology and Land-Use of the coastal zone of the north Jiangsu plain Jiangsu Province, eastern China [J]. Journal of Coastal Research, 1998, 14(2): 591-599.

    Google Scholar

    [7] 张蛟, 崔士友, 胡帅栋, 等. 水稻种植对沿海滩涂土壤有机碳及碳库管理指数的影响[J]. 中国土壤与肥料, 2020(3):107-112

    Google Scholar

    ZHANG Jiao, CUI Shiyou, HU Shuaidong, et al. Effects of rice cultivation on soil organic carbon and carbon pool management index in coastal areas [J]. Soil and Fertilizer Sciences in China, 2020(3): 107-112.

    Google Scholar

    [8] 李霄宇, 程亮, 沙红良, 等. 天津市滨海新区滩涂开发利用特征的遥感分析[J]. 海洋通报, 2021, 40(4):379-386

    Google Scholar

    LI Xiaoyu, CHENG Liang, SHA Hongliang, et al. Remote sensing analysis of tidal flat utilization characteristic of Tianjin Binhai New Area [J]. Marine Science Bulletin, 2021, 40(4): 379-386.

    Google Scholar

    [9] Choi Y R. Profitable tidal flats, governable fishing communities: Assembling tidal flat fisheries in post-crisis South Korea [J]. Political Geography, 2019, 72: 20-30. doi: 10.1016/j.polgeo.2019.03.006

    CrossRef Google Scholar

    [10] 樊咏阳, 陈正兵, 张志林, 等. 长江口水下三角洲演变规律及河势控制初探[J]. 海洋工程, 2020, 38(4):91-99

    Google Scholar

    FAN Yongyang, CHEN Zhengbing, ZHANG Zhilin, et al. The evolution law of underwater delta in the estuary area of the Yangtze River and preliminary study on river regime control [J]. The Ocean Engineering, 2020, 38(4): 91-99.

    Google Scholar

    [11] 张乔民, 隋淑珍, 张叶春, 等. 红树林宜林海洋环境指标研究[J]. 生态学报, 2001, 21(9):1427-1437

    Google Scholar

    ZHANG Qiaomin, SUI Shuzhen, ZHANG Yechun, et al. Marine environmental indexes related to mangrove growth [J]. Acta Ecologica Sinica, 2001, 21(9): 1427-1437.

    Google Scholar

    [12] 邢超锋, 何青, 王宪业, 等. 崇明东滩地貌演变对生态治理工程的响应研究[J]. 泥沙研究, 2016(4):41-48

    Google Scholar

    XING Chaofeng, HE Qing, WANG Xianye, et al. Study on the response of morphological evolution of Eastern Chongming Shoal to ecological management project [J]. Journal of Sediment Research, 2016(4): 41-48.

    Google Scholar

    [13] Murray N J, Ma Z J, Fuller R A. Tidal flats of the Yellow Sea: A review of ecosystem status and anthropogenic threats [J]. Austral Ecology, 2015, 40(4): 472-481. doi: 10.1111/aec.12211

    CrossRef Google Scholar

    [14] 熊李虎, 陈俐骁, 黄世昌. 乐清湾水鸟群落变化及对滩涂围垦的响应[J]. 浙江水利科技, 2019, 47(5):5-10

    Google Scholar

    XIONG Lihu, CHEN Lixiao, HUANG Shichang. Variation of waterfowl community in Yueqing bay and its response to beach reclamation [J]. Zhejiang Hydrotechnics, 2019, 47(5): 5-10.

    Google Scholar

    [15] 黎树式, 黄鹄. 近50年钦江水沙变化研究[J]. 广西科学, 2018, 25(4):409-417

    Google Scholar

    LI Shushi, HUANG Hu. Variations of runoff and sediment in Qinjiang River in the past 50 years [J]. Guangxi Sciences, 2018, 25(4): 409-417.

    Google Scholar

    [16] Chen L H, Wang Y, Touati B et al. Temporal characteristics detection and attribution analysis of hydrological time-series variation in the seagoing river of southern China under environmental change [J]. Acta Geophysica, 2018, 66(5): 1151-1170. doi: 10.1007/s11600-018-0198-y

    CrossRef Google Scholar

    [17] 董德信, 李谊纯, 陈宪云, 等. 海洋工程对钦州湾岸线地形及泥沙冲淤的影响[J]. 广西科学, 2015, 22(3):266-273

    Google Scholar

    DONG Dexin, LI Yichun, CHEN Xianyun, et al. Impacts of ocean engineering on shoreline, topography and deposition-erosion environment in Qinzhou Gulf [J]. Guangxi Sciences, 2015, 22(3): 266-273.

    Google Scholar

    [18] 赵薛强, 林桂兰. 海湾综合整治与资源环境优化研究进展[J]. 海洋环境科学, 2011, 30(5):752-756 doi: 10.3969/j.issn.1007-6336.2011.05.034

    CrossRef Google Scholar

    ZHAO Xueqiang, LIN Guilan. Review on integrated renovation and environment optimization of resource in bay [J]. Marine Environmental Science, 2011, 30(5): 752-756. doi: 10.3969/j.issn.1007-6336.2011.05.034

    CrossRef Google Scholar

    [19] 王日明, 梁喜幸, 周晓妍, 等. 钦江河口潮滩红树林群落空间分布[J]. 遥感学报, 2022, 26(6):1143-1154

    Google Scholar

    WANG Riming, LIANG Xixing, ZHOU Xiaoyan, et al. Spatial distribution pattern of mangrove community in tidal flats of the Qinjiang estuary [J]. National Remote Sensing Bulletin, 2022, 26(6): 1143-1154.

    Google Scholar

    [20] Mcfeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features [J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432. doi: 10.1080/01431169608948714

    CrossRef Google Scholar

    [21] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595

    Google Scholar

    XU Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI) [J]. Journal of remote sensing[J]. Journal of Remote Sensing, 2005, 9(5): 589-595.

    Google Scholar

    [22] Rouse J W Jr, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with ERTS [J]. Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, 1974, 1: 48-62.

    Google Scholar

    [23] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the modis vegetation indices [J]. Remote Sensing of Environment, 2002, 83(1-2): 195-213. doi: 10.1016/S0034-4257(02)00096-2

    CrossRef Google Scholar

    [24] Chen J Y, Li D J, Chen B L, et al. The processes of dynamic sedimentation in the Changjiang Estuary [J]. Journal of Sea Research, 1999, 41(1-2): 129-140. doi: 10.1016/S1385-1101(98)00047-1

    CrossRef Google Scholar

    [25] Dai Z J, Fagherazzi S, Mei X F, et al. Linking the infilling of the North Branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013 [J]. Marine Geology, 2016, 379: 1-12. doi: 10.1016/j.margeo.2016.05.006

    CrossRef Google Scholar

    [26] 莫剑, 卢远, 王丹媛, 等. 广西钦江流域水沙年际变化规律分析[J]. 水利水电技术, 2020, 51(1):130-138

    Google Scholar

    MO Jian, LU Yuan, WANG Danyuan, et al. Analysis of interannual water-sediment variation law of Qinjiang River Basin in Guangxi [J]. Water Resources and Hydropower Engineering, 2020, 51(1): 130-138.

    Google Scholar

    [27] Chen Y N, Li Y, Thompson C E L, et al. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary [J]. Geomorphology, 2018, 318: 270-282. doi: 10.1016/j.geomorph.2018.06.018

    CrossRef Google Scholar

    [28] 王日明, 黄鹄. 南流江口洲滩景观过程研究[J]. 海洋科学, 2020, 44(12):84-92

    Google Scholar

    WANG Riming, HUANG Hu. Research on the landscape process of the Nanliu estuary [J]. Marine Sciences, 2020, 44(12): 84-92.

    Google Scholar

    [29] 杨桂山, 施雅风, 季子修. 江苏淤泥质潮滩对海平面变化的形态响应[J]. 地理学报, 2002, 57(1):76-84

    Google Scholar

    YANG Guishan, SHI Yafeng, JI Zixiu. The morphological response of typical mud flat to sea level change in Jiangsu coastal plain [J]. Acta Geographica Sinica, 2002, 57(1): 76-84.

    Google Scholar

    [30] Wu M Y, Harris P, Eberli G, et al. Sea-level, storms, and sedimentation – Controls on the architecture of the Andros tidal flats (Great Bahama Bank) [J]. Sedimentary Geology, 2021, 420: 105932. doi: 10.1016/j.sedgeo.2021.105932

    CrossRef Google Scholar

    [31] 杨蕙. 海湾环境整治效果评价指标体系及评价方法的研究[D]. 国家海洋局第三海洋研究所硕士学位论文, 2017

    Google Scholar

    YANG Hui. Study on evaluation index system and evaluation method of comprehensive renovation[D]. Master Dissertation of Third Institute of Oceanography, MNR, 2017.

    Google Scholar

    [32] 杨钰文, 卢远, 黄萍. 基于遥感的北部湾茅尾海岸滩时空变化研究[J]. 海洋技术学报, 2020, 39(4):1-8

    Google Scholar

    YANG Yuwen, LU Yuan, HUANG Ping. Study on the spatial-temporal changes of Maowei shoreline and tidal flat based on remote sensing [J]. Journal of Ocean Technology, 2020, 39(4): 1-8.

    Google Scholar

    [33] 夏长水, 陈振华, 韦重霄, 等. 广西钦州茅尾海综合整治水动力影响研究[J]. 海岸工程, 2020, 39(3):157-168

    Google Scholar

    XIA Changshui, CHEN Zhenhua, WEI Chongxiao, et al. Study on hydrodynamic influence induced by comprehensive regulation of the Maowei Sea in Qinzhou, Guangxi province [J]. Coastal Engineering, 2020, 39(3): 157-168.

    Google Scholar

    [34] Gu Y G, Huang H H, Liu Y, et al. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea [J]. Environmental Toxicology and Pharmacology, 2018, 59: 119-124. doi: 10.1016/j.etap.2018.03.002

    CrossRef Google Scholar

    [35] Yang B, Lan R Z, Lu D L, et al. Phosphorus biogeochemical cycling in intertidal surface sediments from the Maowei Sea in the northern Beibu Gulf [J]. Regional Studies in Marine Science, 2019, 28: 100624. doi: 10.1016/j.rsma.2019.100624

    CrossRef Google Scholar

    [36] 钟方杰, 黄伟德, 李选积, 等. 广西钦州大蚝苗种产业发展现状与对策分析[J]. 水产养殖, 2020, 41(5):79-80

    Google Scholar

    ZHONG Fangjie, HUANG Weide, LI Xuanji, et al. Analysis on the development current situation and countermeasures of the Oyster seedling industry in Qinzhou, Guangxi [J]. Journal of Aquaculture, 2020, 41(5): 79-80.

    Google Scholar

    [37] 杨留柱, 杨莉玲, 潘洪州, 等. 人类活动影响下的钦州湾近期滩槽冲淤演变特征[J]. 热带海洋学报, 2019, 38(6):41-50

    Google Scholar

    YANG Liuzhu, YANG Liling, PAN Hongzhou, et al. Characteristics of recent evolution in Qinzhou Bay influenced by human activities [J]. Journal of Tropical Oceanography, 2019, 38(6): 41-50.

    Google Scholar

    [38] 陈主器. 广西钦州大蚝苗种产业发展的问题与对策[J]. 养殖与饲料, 2021, 20(11):166-167 doi: 10.3969/j.issn.1671-427X.2021.11.064

    CrossRef Google Scholar

    CHEN Zhuqi. The development problems and countermeasures of Oyster seedling industry in Qinzhou, Guangxi [J]. Animals Breeding and Feed, 2021, 20(11): 166-167. doi: 10.3969/j.issn.1671-427X.2021.11.064

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(2048) PDF downloads(155) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint