2023 Vol. 43, No. 3
Article Contents

LUO Shuaijie, REN Jiangbo, HE Gaowen, DENG XiGuang. Geochemical characteristics of polymetallic nodules and adjacent sediments in the western Pacific Ocean: effects of sedimentary environments on nodules[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 119-131. doi: 10.16562/j.cnki.0256-1492.2022122401
Citation: LUO Shuaijie, REN Jiangbo, HE Gaowen, DENG XiGuang. Geochemical characteristics of polymetallic nodules and adjacent sediments in the western Pacific Ocean: effects of sedimentary environments on nodules[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 119-131. doi: 10.16562/j.cnki.0256-1492.2022122401

Geochemical characteristics of polymetallic nodules and adjacent sediments in the western Pacific Ocean: effects of sedimentary environments on nodules

More Information
  • Polymetallic nodules and rare earth-rich sediments are developing simultaneously in the western Pacific Deep Sea Basin, but there are few studies on the relationship between polymetallic nodules and their surface sediments. In this study, the geochemical analysis of polymetallic nodules and surface sediments was used to reveal the enrichment and fractionation processes of critical metal elements in nodules-sediments and to explore the influence of deposition processes and environment on the growth of polymetallic nodules. The polymetallic nodules in the study area have relatively high Co and REY contents and low Mn/Fe ratios, indicating a typical hydrogenetic precipitation. The results of principal component analysis and correlation analysis indicate the nodule formation process is a selective enrichment of Fe-Mn oxides for various metal elements in seawater and pore water under the influence of hydrogenesis, diagenesis and input from terrestrial debris and bioclastic. The surface sediments in the study area are mainly deep-sea clays, which are more enriched in Si, Al, Na, K, and other elements than the polymetallic nodules, which are enriched in most metal elements. The enrichment of metallic elements such as Co, Ni, and Cu in the sediments is related to the content of Fe-Mn micronodules, while REY is more closely related to the phosphate fraction. the Fe-Mn oxide fraction selectively adsorbs metallic elements in seawater to form multi-element enrichment and significant positive Ce anomalies and negative Y anomalies, while the phosphate fraction mainly inherits the rare earth characteristics of seawater, and their content determines the content and pattern of metallic elements and rare earth elements in the sediments. The nodule and sediments have similar processes in the enrichment of critical elements, and Fe-Mn oxide components are the carriers of elemental enrichment processes in both. The low biological productivity and low sedimentation rate in the study area result in reduced sedimentation fluxes and slower sedimentation rates of the relevant elements in seawater, providing favorable conditions for hydroformed nodule growth. Affected by the Antarctic Bottom Water, the bottom seawater in the study area is characterized by oxygen enrichment, and under the effect of its strong bottom current scouring causes frequent deposition interruptions, which promotes the formation of Fe-Mn oxides and the enrichment of critical metal.

  • 加载中
  • [1] Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.

    Google Scholar

    [2] Toro N, Robles P, Jeldres R I. Seabed mineral resources, an alternative for the future of renewable energy: A critical review [J]. Ore Geology Reviews, 2020, 126: 103699. doi: 10.1016/j.oregeorev.2020.103699

    CrossRef Google Scholar

    [3] Machida S, Fujinaga K, Ishii T, et al. Geology and geochemistry of ferromanganese nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island [J]. Geochemical Journal, 2016, 50(6): 539-555. doi: 10.2343/geochemj.2.0419

    CrossRef Google Scholar

    [4] Ohta J, Yasukawa K, Nakamura K, et al. Geological features and resource potential of deep-sea mud highly enriched in rare-earth elements in the Central Pacific Basin and the Penrhyn Basin [J]. Ore Geology Reviews, 2021, 139: 104440. doi: 10.1016/j.oregeorev.2021.104440

    CrossRef Google Scholar

    [5] 任江波, 邓义楠, 赖佩欣, 等. 太平洋调查区多金属结核的地球化学特征和成因[J]. 地学前缘, 2021, 28(2):412-425

    Google Scholar

    REN Jiangbo, DENG Yi’nan, LAI Peixin, et al. Geochemical characteristics and genesis of the polymetallic nodules in the Pacific survey area [J]. Earth Science Frontiers, 2021, 28(2): 412-425.

    Google Scholar

    [6] Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014, 13: 273-291.

    Google Scholar

    [7] Wang F L, He G W, Deng X G, et al. Fish teeth Sr isotope stratigraphy and Nd isotope variations: New insights on REY enrichments in deep-sea sediments in the Pacific [J]. Journal of Marine Science and Engineering, 2021, 9(12): 1379. doi: 10.3390/jmse9121379

    CrossRef Google Scholar

    [8] Dutkiewicz A, Judge A, Müller R D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean [J]. Geology, 2020, 48(3): 293-297. doi: 10.1130/G46836.1

    CrossRef Google Scholar

    [9] 刘永刚, 杜德文, 李钟山, 等. 太平洋CC区及周边多金属结核分布及资源量预测[J]. 海洋科学进展, 2009, 27(3):342-350 doi: 10.3969/j.issn.1671-6647.2009.03.007

    CrossRef Google Scholar

    LIU Yonggang, DU Dewen, LI Zhongshan, et al. Estimation of polymetallic nodule distribution and resource quantity in the CC zone and its adjacent areas of the Pacific Ocean [J]. Advances in Marine Science, 2009, 27(3): 342-350. doi: 10.3969/j.issn.1671-6647.2009.03.007

    CrossRef Google Scholar

    [10] Alevizos E, Huvenne V A I, Schoening T, et al. Linkages between sediment thickness, geomorphology and Mn nodule occurrence: New evidence from AUV geophysical mapping in the Clarion-Clipperton Zone [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2022, 179: 103645. doi: 10.1016/j.dsr.2021.103645

    CrossRef Google Scholar

    [11] Kim J, Hyeong K, Lee H B, et al. Relationship between polymetallic nodule genesis and sediment distribution in the KODOS (Korea Deep Ocean Study) Area, Northeastern Pacific [J]. Ocean Science Journal, 2012, 47(3): 197-207. doi: 10.1007/s12601-012-0020-8

    CrossRef Google Scholar

    [12] Amparo C R M, Arturo C E, Marlene O C. Morphology and texture of polymetallic nodules and their association with sediments of the Mexican Pacific [J]. Marine Georesources & Geotechnology, 2013, 31(2): 154-175.

    Google Scholar

    [13] Calvert S E, Price N B. Geochemical variation in ferromanganese nodules and associated sediments from the Pacific Ocean [J]. Marine Chemistry, 1977, 5(1): 43-74. doi: 10.1016/0304-4203(77)90014-7

    CrossRef Google Scholar

    [14] Pattan J N, Parthiban G. Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin [J]. Journal of Asian Earth Sciences, 2011, 40(2): 569-580. doi: 10.1016/j.jseaes.2010.10.010

    CrossRef Google Scholar

    [15] Pattan J N, Rao C M, Migdisov A A, et al. Ferromanganese nodules and their associated sediments from the Central Indian Ocean Basin: Rare earth element geochemistry [J]. Marine Georesources & Geotechnology, 2001, 19(3): 155-165.

    Google Scholar

    [16] Elderfield H, Hawkesworth C J, Greaves M J, et al. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments [J]. Geochimica et Cosmochimica Acta, 1981, 45(4): 513-528. doi: 10.1016/0016-7037(81)90184-8

    CrossRef Google Scholar

    [17] Ren J B, He G W, Deng X G, et al. Metallogenesis of Co-rich ferromanganese nodules in the northwestern Pacific: Selective enrichment of metallic elements from seawater [J]. Ore Geology Reviews, 2022, 143: 104778. doi: 10.1016/j.oregeorev.2022.104778

    CrossRef Google Scholar

    [18] Deng X Z, He G W, Xu Y, et al. Oxic bottom water dominates polymetallic nodule formation around the Caiwei Guyot, northwestern Pacific Ocean [J]. Ore Geology Reviews, 2022, 143: 104776. doi: 10.1016/j.oregeorev.2022.104776

    CrossRef Google Scholar

    [19] Li D F, Fu Y, Sun X M, et al. Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: Insights from mineralogy and element mobility [J]. Ore Geology Reviews, 2020, 118: 103371. doi: 10.1016/j.oregeorev.2020.103371

    CrossRef Google Scholar

    [20] Reykhard L Y, Shulga N A. Fe-Mn nodule morphotypes from the NE Clarion-Clipperton Fracture Zone, Pacific Ocean: Comparison of mineralogy, geochemistry and genesis [J]. Ore Geology Reviews, 2019, 110: 102933. doi: 10.1016/j.oregeorev.2019.102933

    CrossRef Google Scholar

    [21] Ren J B, Liu Y, Wang F L, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments [J]. Minerals, 2021, 11(2): 196. doi: 10.3390/min11020196

    CrossRef Google Scholar

    [22] Yu M, Shi X F, Huang M, et al. The transfer of rare earth elements during early diagenesis in REY-rich sediments: An example from the Central Indian Ocean Basin [J]. Ore Geology Reviews, 2021, 136: 104269. doi: 10.1016/j.oregeorev.2021.104269

    CrossRef Google Scholar

    [23] Zhou T C, Shi X F, Huang M, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: Evidence from geochemistry, mineralogy and isotope systematics [J]. Ore Geology Reviews, 2021, 138: 104330. doi: 10.1016/j.oregeorev.2021.104330

    CrossRef Google Scholar

    [24] Konter J G, Hanan B B, Blichert-Toft J, et al. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature [J]. Earth and Planetary Science Letters, 2008, 275(3-4): 285-295. doi: 10.1016/j.jpgl.2008.08.023

    CrossRef Google Scholar

    [25] Karl S M, Wandless G A, Karpoff A M. Sedimentological and geochemical characteristics of Leg 129 siliceous deposits[C]//Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas: Ocean Drilling Program, 1992, 129: 31-79.

    Google Scholar

    [26] Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.

    Google Scholar

    [27] Deng X G, Yi L, Paterson G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the Middle Pleistocene: potential constraints for Antarctic bottom water circulation [J]. International Geology Review, 2016, 58(1): 49-57. doi: 10.1080/00206814.2015.1055597

    CrossRef Google Scholar

    [28] Jiang X D, Gong J L, Ren J B, et al. An interdependent relationship between microbial ecosystems and ferromanganese nodules from the Western Pacific Ocean [J]. Sedimentary Geology, 2020, 398: 105588. doi: 10.1016/j.sedgeo.2019.105588

    CrossRef Google Scholar

    [29] 何高文, 杨永, 韦振权, 等. 西太平洋中国富钴结壳勘探合同区矿床地质[J]. 中国有色金属学报, 2021, 31(10):2649-2664

    Google Scholar

    HE Gaowen, YANG Yong, WEI Zhenquan, et al. Mineral deposit characteristics of cobalt-rich Fe-Mn crusts in COMRA contract area, Western Pacific Ocean [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2649-2664.

    Google Scholar

    [30] Yi L, Wang H F, Deng X G, et al. Geochronology and geochemical properties of Mid-Pleistocene sediments on the Caiwei Guyot in the Northwest Pacific imply a surface-to-deep linkage [J]. Journal of Marine Science and Engineering, 2021, 9(3): 253. doi: 10.3390/jmse9030253

    CrossRef Google Scholar

    [31] Anderson D L. Chemical composition of the mantle [J]. Journal of Geophysical Research:Solid Earth, 1983, 88(S01): B41-B52. doi: 10.1029/JB088iS01p00B41

    CrossRef Google Scholar

    [32] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1985.

    Google Scholar

    [33] Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    CrossRef Google Scholar

    [34] Schmidt K, Bau M, Hein J R, et al. Fractionation of the geochemical twins Zr-Hf and Nb-Ta during scavenging from seawater by hydrogenetic ferromanganese crusts [J]. Geochimica et Cosmochimica Acta, 2014, 140: 468-487. doi: 10.1016/j.gca.2014.05.036

    CrossRef Google Scholar

    [35] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    CrossRef Google Scholar

    [36] Menendez A, James R H, Lichtschlag A, et al. Controls on the chemical composition of ferromanganese nodules in the Clarion-Clipperton Fracture Zone, eastern equatorial Pacific [J]. Marine Geology, 2019, 409: 1-14. doi: 10.1016/j.margeo.2018.12.004

    CrossRef Google Scholar

    [37] 邓贤泽, 任江波, 邓希光, 等. 富钴结壳关键元素赋存状态与富集机理[J]. 地质通报, 2021, 40(2-3):376-384

    Google Scholar

    DENG Xianze, REN Jiangbo, DENG Xiguang, et al. Cobalt-rich crust obtains high contents of key elements from seawater: element absorption and distribution [J]. Geological Bulletin of China, 2021, 40(2-3): 376-384.

    Google Scholar

    [38] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001

    CrossRef Google Scholar

    [39] 任江波, 何高文, 朱克超, 等. 富稀土磷酸盐及其在深海成矿作用中的贡献[J]. 地质学报, 2017, 91(6):1312-1325

    Google Scholar

    REN Jiangbo, HE Gaowen, ZHU Kechao, et al. REY-rich Phosphate and Its Effects on the Deep-Sea Mud Mineralization [J]. Acta Geologica Sinica, 2017, 91(6): 1312-1325.

    Google Scholar

    [40] Halbach P, Scherhag C, Hebisch U, et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean [J]. Mineralium Deposita, 1981, 16(1): 59-84.

    Google Scholar

    [41] Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Kuhn T, Wegorzewski A, Rühlemann C, et al. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.

    Google Scholar

    [42] 何高文, 孙晓明, 薛婷. 太平洋多金属结核和富钴结壳地质地球化学特征与成矿机制对比[M]. 北京: 地质出版社, 2011

    Google Scholar

    HE Gaowen, SUN Xiaoming, XUE Ting. Geological and Geochemical Characteristics and Metallogenic Mechanism of Polymetallic Nodules and Cobalt Rich Crusts in the Pacific Ocean[M]. Beijing: Geology Press, 2011.

    Google Scholar

    [43] 石学法, 符亚洲, 李兵, 等. 我国深海矿产研究: 进展与发现(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 40(2):305-318

    Google Scholar

    SHI Xuefa, FU Yazhou, LI Bing, et al. Research on deep-sea minerals in China: Progress and discovery (2011-2020) [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 305-318.

    Google Scholar

    [44] 任江波, 姚会强, 朱克超, 等. 稀土元素及钇在东太平洋CC区深海泥中的富集特征与机制[J]. 地学前缘, 2015, 22(4):200-211

    Google Scholar

    REN Jiangbo, YAO Huiqiang, ZHU Kechao, et al. Enrichment mechanism of rare earth elements and yttrium in deep-sea mud of Clarion-Clipperton Region [J]. Earth Science Frontiers, 2015, 22(4): 200-211.

    Google Scholar

    [45] 王汾连, 何高文, 王海峰, 等. 中太平洋深海沉积物中元素组合特征及地质意义[J]. 海洋地质前沿, 2016, 32(7):11-18

    Google Scholar

    WANG Fenlian, HE Gaowen, WANG Haifeng, et al. The element association characteristics and geological significance of deep-sea sediments in the Central Pacific Ocean [J]. Marine Geology Frontiers, 2016, 32(7): 11-18.

    Google Scholar

    [46] Vallee B L, Auld D S. Zinc: biological functions and coordination motifs [J]. Accounts of Chemical Research, 1993, 26(10): 543-551. doi: 10.1021/ar00034a005

    CrossRef Google Scholar

    [47] Smrzka D, Zwicker J, Bach W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review [J]. Facies, 2019, 65(4): 41. doi: 10.1007/s10347-019-0581-4

    CrossRef Google Scholar

    [48] Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142: 16-33. doi: 10.1016/j.dsr.2018.09.008

    CrossRef Google Scholar

    [49] Jiang X J, Lin X H, Yao D, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts [J]. Science China Earth Sciences, 2011, 54(2): 197-203. doi: 10.1007/s11430-010-4070-4

    CrossRef Google Scholar

    [50] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    CrossRef Google Scholar

    [51] Takebe M. Carriers of rare earth elements in pacific deep-sea sediments [J]. The Journal of Geology, 2005, 113(2): 201-215. doi: 10.1086/427669

    CrossRef Google Scholar

    [52] Loges A, Wagner T, Barth M, et al. Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water–mineral interaction [J]. Geochimica et Cosmochimica Acta, 2012, 86: 296-317. doi: 10.1016/j.gca.2012.03.017

    CrossRef Google Scholar

    [53] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules [J]. Paleoceanography, 1990, 5(5): 823-833. doi: 10.1029/PA005i005p00823

    CrossRef Google Scholar

    [54] Schijf J, Christenson E A, Byrne R H. YREE scavenging in seawater: A new look at an old model [J]. Marine Chemistry, 2015, 177: 460-471. doi: 10.1016/j.marchem.2015.06.010

    CrossRef Google Scholar

    [55] 任江波, 邓希光, 邓义楠, 等. 中国富钴结壳合同区海水的稀土元素特征及其意义[J]. 地球科学, 2019, 44(10):3529-3540

    Google Scholar

    REN Jiangbo, DENG Xiguang, DENG Yi’nan, et al. Rare earth element characteristics and its geological implications for seawater from cobalt-rich ferromanganese crust exploration contract area of China [J]. Earth Science, 2019, 44(10): 3529-3540.

    Google Scholar

    [56] 任江波, 何高文, 姚会强, 等. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J]. 地球科学, 2016, 41(10):1745-1757

    Google Scholar

    REN Jiangbo, HE Gaowen, YAO Huiqiang, et al. Geochemistry and significance of REE and PGE of the cobalt-rich crusts from West Pacific ocean seamounts [J]. Earth Science, 2016, 41(10): 1745-1757.

    Google Scholar

    [57] Hein J R, Koschinsky A, Mikesell M, et al. Marine phosphorites as potential resources for heavy rare earth elements and yttrium [J]. Minerals, 2016, 6(3): 88. doi: 10.3390/min6030088

    CrossRef Google Scholar

    [58] Li D F, Fu Y, Liu Q F, et al. High-resolution LA-ICP-MS mapping of deep-sea polymetallic micronodules and its implications on element mobility [J]. Gondwana Research, 2020, 81: 461-474. doi: 10.1016/j.gr.2019.12.009

    CrossRef Google Scholar

    [59] Zhou T C, Shi X F, Huang M, et al. The influence of hydrothermal fluids on the REY-rich deep-sea sediments in the Yupanqui Basin, Eastern South Pacific Ocean: Constraints from bulk sediment geochemistry and mineralogical characteristics [J]. Minerals, 2020, 10(12): 1141. doi: 10.3390/min10121141

    CrossRef Google Scholar

    [60] Liao J L, Sun X M, Wu Z W, et al. Fe-Mn (oxyhydr)oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific [J]. Ore Geology Reviews, 2019, 112: 103044. doi: 10.1016/j.oregeorev.2019.103044

    CrossRef Google Scholar

    [61] Bi D J, Shi X F, Huang M, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: Constraints on the enrichment processes of rare earth elements [J]. Ore Geology Reviews, 2021, 138: 104318. doi: 10.1016/j.oregeorev.2021.104318

    CrossRef Google Scholar

    [62] 石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2-3):195-208

    Google Scholar

    SHI Xuefa, BI Dongjie, HUANG Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements [J]. Geological Bulletin of China, 2021, 40(2-3): 195-208.

    Google Scholar

    [63] Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7(1): 16539. doi: 10.1038/s41598-017-16379-1

    CrossRef Google Scholar

    [64] Verlaan P A, Cronan D S. Origin and variability of resource-grade marine ferromanganese nodules and crusts in the Pacific Ocean: A review of biogeochemical and physical controls [J]. Geochemistry, 2022, 82(1): 125741. doi: 10.1016/j.chemer.2021.125741

    CrossRef Google Scholar

    [65] Haley B A, Klinkhammer G P, Mcmanus J. Rare earth elements in pore waters of marine sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012

    CrossRef Google Scholar

    [66] 王海峰, 王汾连, 朱克超, 等. 东太平洋CC区WPC1101柱样沉积环境及埋藏多金属结核成因[J]. 海洋地质前沿, 2016, 32(11):1-11

    Google Scholar

    WANG Haifeng, WANG Fenlian, ZHU Kechao, et al. Depositional environment and origin of buried pollymetallic nodules: an interpretation of piston core WPC1101 from CC zone of Eastern Pacific [J]. Marine Geology Frontiers, 2016, 32(11): 1-11.

    Google Scholar

    [67] 陈宗团, 许东禹, 刘季花, 等. 东北太平洋中新世古海洋环境与事件[J]. 海洋学报, 1994, 16(6):80-91

    Google Scholar

    CHEN Zongtuan, XU Dongyu, LIU Jihua, et al. Miocene paleomarine environment and events in the Northeast Pacific [J]. Acta Oceanologica Sinica, 1994, 16(6): 80-91.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(3710) PDF downloads(119) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint