2023 Vol. 43, No. 3
Article Contents

LIU Hongling, TIAN Liyan, WU Tao, CHEN Lingxuan, SHEN Chenxi. Behavior of Li isotopes during the alteration of oceanic crust: A review[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 93-106. doi: 10.16562/j.cnki.0256-1492.2022112001
Citation: LIU Hongling, TIAN Liyan, WU Tao, CHEN Lingxuan, SHEN Chenxi. Behavior of Li isotopes during the alteration of oceanic crust: A review[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 93-106. doi: 10.16562/j.cnki.0256-1492.2022112001

Behavior of Li isotopes during the alteration of oceanic crust: A review

More Information
  • Before subduction into the mantle, the oceanic crust formed at mid-ocean ridges would undergo fluid-rock interaction on the seafloor and within the crust. Study in this regard can enhance our understanding of the seafloor hydrothermal system and crust-mantle recycling. Lithium (Li) is strongly mobilized by hydrous fluids and has significant isotopic fractionation during many geological processes (e.g. weathering, seawater, and hydrothermal alteration), thus the variation in Li content and isotopic ratio provide information of the oceanic crust alteration. At present, geochemical data of altered oceanic crust are still lack, and the interpretations of available Li data are often controversial, which caused no consensus on the mechanism of the alteration process. We summarized the Li data of altered basalts and serpentinized peridotites from oceanic drilling cores, discussed the main factors controlling Li behaviors during the alteration process (e.g., the temperature of fluid-rock reaction, chemical composition of fluid, water-rock ratio, secondary mineral precipitation), and suggested that future studies shall be strengthened in the following directions: (1) keep adding new Li isotope data into the geochemical reservoirs and improving the accuracy of analysis; (2) conduct studies on Li isotopes at different spatial scales; (3) evaluate the effects of both equilibrium and kinetic fractionation when considering the high-temperature alteration processes; (4) combine Li and other isotope systems that display similar behaviors during the oceanic crust alteration.

  • 加载中
  • [1] Chan L H, Leeman W P, You C F. Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction [J]. Chemical Geology, 2002, 182(2-4): 293-300. doi: 10.1016/S0009-2541(01)00298-4

    CrossRef Google Scholar

    [2] Alt J C, Laverne C, Coggon R M, et al. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256 [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(10): Q10010.

    Google Scholar

    [3] Zhang G L, Smith-Duque C. Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(7): 3066-3080. doi: 10.1002/2013GC005141

    CrossRef Google Scholar

    [4] Thompson G. Metamorphic and hydrothermal processes: basalt-seawater interactions[M]//Floyd P A. Oceanic Basalts. Dordrecht: Springer, 1991: 148-173.

    Google Scholar

    [5] Bach W, Alt J C, Niu Y L, et al. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg176) [J]. Geochimica et Cosmochimica Acta, 2001, 65(19): 3267-3287. doi: 10.1016/S0016-7037(01)00677-9

    CrossRef Google Scholar

    [6] Rudnick R L, Nakamura E. Preface to “Lithium isotope geochemistry” [J]. Chemical Geology, 2004, 212(1-2): 1-4. doi: 10.1016/j.chemgeo.2004.08.001

    CrossRef Google Scholar

    [7] Hathorne E C, James R H. Temporal record of lithium in seawater: a tracer for silicate weathering? [J]. Earth and Planetary Science Letters, 2006, 246(3-4): 393-406. doi: 10.1016/j.jpgl.2006.04.020

    CrossRef Google Scholar

    [8] Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering [J]. Science, 2012, 335(6070): 818-823. doi: 10.1126/science.1214697

    CrossRef Google Scholar

    [9] Tomascak P B, Magna T, Dohmen R. Advances in Lithium Isotope Geochemistry[M]. Cham: Springer, 2016.

    Google Scholar

    [10] Elliott T, Jeffcoate A, Bouman C. The terrestrial Li isotope cycle: light-weight constraints on mantle convection [J]. Earth and Planetary Science Letters, 2004, 220(3-4): 231-245. doi: 10.1016/S0012-821X(04)00096-2

    CrossRef Google Scholar

    [11] Seitz H M, Brey G P, Lahaye Y, et al. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes [J]. Chemical Geology, 2004, 212(1-2): 163-177. doi: 10.1016/j.chemgeo.2004.08.009

    CrossRef Google Scholar

    [12] Pistiner J S, Henderson G M. Lithium-isotope fractionation during continental weathering processes [J]. Earth and Planetary Science Letters, 2003, 214(1-2): 327-339. doi: 10.1016/S0012-821X(03)00348-0

    CrossRef Google Scholar

    [13] Millot R, Scaillet B, Sanjuan B. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach [J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1852-1871. doi: 10.1016/j.gca.2009.12.007

    CrossRef Google Scholar

    [14] Liu J Y, Liu Q Y, Meng Q Q, et al. The distribution of lithium in nature and the application of lithium isotope tracing [J]. IOP Conference Series:Earth and Environmental Science, 2020, 600: 012018. doi: 10.1088/1755-1315/600/1/012018

    CrossRef Google Scholar

    [15] 汤艳杰, 张宏福, 英基丰. 锂同位素分馏机制讨论[J]. 地球科学-中国地质大学学报, 2009, 34(1):43-55 doi: 10.3799/dqkx.2009.006

    CrossRef Google Scholar

    TANG Yanjie, ZHANG Hongfu, YING Jifeng. Discussion on fractionation mechanism of lithium isotopes [J]. Earth Science-Journal of China University of Geosciences, 2009, 34(1): 43-55. doi: 10.3799/dqkx.2009.006

    CrossRef Google Scholar

    [16] Brant C, Coogan L A, Gillis K M, et al. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise [J]. Geochimica et Cosmochimica Acta, 2012, 96: 272-293. doi: 10.1016/j.gca.2012.08.025

    CrossRef Google Scholar

    [17] Seyedali M, Coogan L A, Gillis K M. Li-isotope exchange during low-temperature alteration of the upper oceanic crust at DSDP Sites 417 and 418 [J]. Geochimica et Cosmochimica Acta, 2021, 294: 160-173. doi: 10.1016/j.gca.2020.11.023

    CrossRef Google Scholar

    [18] Gao Y, Vils F, Cooper K M, et al. Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256 [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10001.

    Google Scholar

    [19] Decitre S, Deloule E, Reisberg L, et al. Behavior of Li and its isotopes during serpentinization of oceanic peridotites [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(1): 1-20.

    Google Scholar

    [20] Lee C T A, Oka M, Luffi P, et al. Internal distribution of Li and B in serpentinites from the Feather River Ophiolite, California, based on laser ablation inductively coupled plasma mass spectrometry [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(12): Q12011.

    Google Scholar

    [21] Vils F, Pelletier L, Kalt A, et al. The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere [J]. Geochimica et Cosmochimica Acta, 2008, 72(22): 5475-5504. doi: 10.1016/j.gca.2008.08.005

    CrossRef Google Scholar

    [22] Vils F, Tonarini S, Kalt A, et al. Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209 [J]. Earth and Planetary Science Letters, 2009, 286(3-4): 414-425. doi: 10.1016/j.jpgl.2009.07.005

    CrossRef Google Scholar

    [23] Sahoo S K, Masuda A. Precise determination of lithium isotopic composition by thermal ionization mass spectrometry in natural samples such as seawater [J]. Analytica Chimica Acta, 1998, 370(2-3): 215-220. doi: 10.1016/S0003-2670(98)00307-9

    CrossRef Google Scholar

    [24] Moriguti T, Nakamura E. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples [J]. Chemical Geology, 1998, 145(1-2): 91-104. doi: 10.1016/S0009-2541(97)00163-0

    CrossRef Google Scholar

    [25] 李献华, 刘宇, 汤艳杰, 等. 离子探针Li同位素微区原位分析技术与应用[J]. 地学前缘, 2015, 22(5):160-170 doi: 10.13745/j.esf.2015.05.013

    CrossRef Google Scholar

    LI Xianhua, LIU Yu, TANG Yanjie, et al. In situ Li isotopic microanalysis using SIMS and its applications [J]. Earth Science Frontiers, 2015, 22(5): 160-170. doi: 10.13745/j.esf.2015.05.013

    CrossRef Google Scholar

    [26] Tomascak P B, Tera F, Helz R T, et al. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS [J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910. doi: 10.1016/S0016-7037(98)00318-4

    CrossRef Google Scholar

    [27] Magna T, Wiechert U H, Halliday A N. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS [J]. International Journal of Mass Spectrometry, 2004, 239(1): 67-76. doi: 10.1016/j.ijms.2004.09.008

    CrossRef Google Scholar

    [28] Millot R, Guerrot C, Vigier N. Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS [J]. Geostandards and Geoanalytical Research, 2004, 28(1): 153-159. doi: 10.1111/j.1751-908X.2004.tb01052.x

    CrossRef Google Scholar

    [29] Le Roux P J. Lithium isotope analysis of natural and synthetic glass by laser ablation MC-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1033-1038. doi: 10.1039/b920341a

    CrossRef Google Scholar

    [30] Xu R, Liu Y S, Tong X R, et al. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification [J]. Chemical Geology, 2013, 354: 107-123. doi: 10.1016/j.chemgeo.2013.06.022

    CrossRef Google Scholar

    [31] Li X H, Li Q L, Liu Y, et al. Further characterization of M257 zircon standard: a working reference for SIMS analysis of Li isotopes [J]. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 352-358. doi: 10.1039/C0JA00073F

    CrossRef Google Scholar

    [32] Bell D R, Hervig R L, Buseck P R, et al. Lithium isotope analysis of olivine by SIMS: calibration of a matrix effect and application to magmatic phenocrysts [J]. Chemical Geology, 2009, 258(1-2): 5-16. doi: 10.1016/j.chemgeo.2008.10.008

    CrossRef Google Scholar

    [33] Flesch G D, Anderson A J Jr, Svee H J. A secondary isotopic standard for 6Li/7Li determinations [J]. International Journal of Mass Spectrometry and Ion Physics, 1973, 12(3): 265-272. doi: 10.1016/0020-7381(73)80043-9

    CrossRef Google Scholar

    [34] Kasemann S A, Jeffcoate A B, Elliott T. Lithium isotope composition of basalt glass reference material [J]. Analytical Chemistry, 2005, 77(16): 5251-5257. doi: 10.1021/ac048178h

    CrossRef Google Scholar

    [35] Michiels E, De Bièvre P. Absolute isotopic composition and the atomic weight of a natural sample of lithium [J]. International Journal of Mass Spectrometry and Ion Physics, 1983, 49(2): 265-274. doi: 10.1016/0020-7381(83)85068-2

    CrossRef Google Scholar

    [36] Tang Y J, Zhang H F, Ying J F. A brief review of isotopically light Li–a feature of the enriched mantle? [J]. International Geology Review, 2010, 52(9): 964-976. doi: 10.1080/00206810903211385

    CrossRef Google Scholar

    [37] Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans [J]. Earth and Planetary Science Letters, 1992, 108(1-3): 151-160. doi: 10.1016/0012-821X(92)90067-6

    CrossRef Google Scholar

    [38] Tang Y J, Zhang H F, Ying J F. Review of the lithium isotope system as a geochemical tracer [J]. International Geology Review, 2007, 49(4): 374-388. doi: 10.2747/0020-6814.49.4.374

    CrossRef Google Scholar

    [39] Parkinson I J, Hammond S J, James R H, et al. High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems [J]. Earth and Planetary Science Letters, 2007, 257(3-4): 609-621. doi: 10.1016/j.jpgl.2007.03.023

    CrossRef Google Scholar

    [40] You C F, Chan L H. Precise determination of lithium isotopic composition in low concentration natural samples [J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 909-915. doi: 10.1016/0016-7037(96)00003-8

    CrossRef Google Scholar

    [41] Tomascak P B. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences [J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 153-195. doi: 10.2138/gsrmg.55.1.153

    CrossRef Google Scholar

    [42] Teng F Z, McDonough W F, Rudnick R L, et al. Lithium isotopic composition and concentration of the upper continental crust [J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4167-4178. doi: 10.1016/j.gca.2004.03.031

    CrossRef Google Scholar

    [43] Zack T, Tomascak P B, Rudnick R L, et al. Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust [J]. Earth and Planetary Science Letters, 2003, 208(3-4): 279-290. doi: 10.1016/S0012-821X(03)00035-9

    CrossRef Google Scholar

    [44] Wunder B, Meixner A, Romer R L, et al. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study [J]. Chemical Geology, 2007, 238(3-4): 277-290. doi: 10.1016/j.chemgeo.2006.12.001

    CrossRef Google Scholar

    [45] Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones [J]. Chemical Geology, 2004, 212(1-2): 59-79. doi: 10.1016/j.chemgeo.2004.08.004

    CrossRef Google Scholar

    [46] Leeman W P, Tonarini S, Chan L H, et al. Boron and lithium isotopic variations in a hot subduction zone-the southern Washington Cascades [J]. Chemical Geology, 2004, 212(1-2): 101-124. doi: 10.1016/j.chemgeo.2004.08.010

    CrossRef Google Scholar

    [47] Karson J A. Geologic structure of the uppermost oceanic crust created at fast-to intermediate-rate spreading centers [J]. Annual Review of Earth and Planetary Sciences, 2002, 30: 347-384. doi: 10.1146/annurev.earth.30.091201.141132

    CrossRef Google Scholar

    [48] Michibayashi K, Tominaga M, Ildefonse B, et al. What lies beneath: the formation and evolution of oceanic lithosphere [J]. Oceanography, 2019, 32(1): 138-149. doi: 10.5670/oceanog.2019.136

    CrossRef Google Scholar

    [49] Honnorez J. The aging of the oceanic crust at low temperature[M]//Emiliani C. The Sea, Vol. 7. New York: John Wiley and Sons, 1981: 525-587.

    Google Scholar

    [50] Seitz H M, Woodland A B. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes [J]. Chemical Geology, 2000, 166(1-2): 47-64. doi: 10.1016/S0009-2541(99)00184-9

    CrossRef Google Scholar

    [51] Pichler T, Ridley W I, Nelson E. Low-temperature alteration of dredged volcanics from the southern Chile Ridge: additional information about early stages of seafloor weathering [J]. Marine Geology, 1999, 159(1-4): 155-177. doi: 10.1016/S0025-3227(99)00008-0

    CrossRef Google Scholar

    [52] James R H, Allen D E, Seyfried W E Jr. An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems [J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 681-691. doi: 10.1016/S0016-7037(02)01113-4

    CrossRef Google Scholar

    [53] Böhlke J K, Honnorez J, Honnorez-Guerstein B M, et al. Heterogeneous alteration of the upper oceanic crust: correlation of rock chemistry, magnetic properties, and O isotope ratios with alteration patterns in basalts from site 396B, DSDP [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B9): 7935-7950. doi: 10.1029/JB086iB09p07935

    CrossRef Google Scholar

    [54] Mengel K, Hoefs J. Li-18O-SiO2 systematics in volcanic rocks and mafic lower crustal granulite xenoliths [J]. Earth and Planetary Science Letters, 1990, 101(1): 42-53. doi: 10.1016/0012-821X(90)90122-E

    CrossRef Google Scholar

    [55] Zuleger E, Alt J C, Erzinger J, et al. Data-report: trace-element geochemistry of the lower sheeted dike complex, hole 504B (Leg 140) [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1996, 148: 455-466.

    Google Scholar

    [56] Browne P R L. Hydrothermal alteration in active geothermal fields [J]. Annual Review of Earth and Planetary Sciences, 1978, 6: 229-248. doi: 10.1146/annurev.ea.06.050178.001305

    CrossRef Google Scholar

    [57] Humphris S E, Thompson G. Trace element mobility during hydrothermal alteration of oceanic basalts [J]. Geochimica et Cosmochimica Acta, 1978, 42(1): 127-136. doi: 10.1016/0016-7037(78)90222-3

    CrossRef Google Scholar

    [58] Wunder B, Meixner A, Romer R L, et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids [J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 112-120. doi: 10.1007/s00410-005-0049-0

    CrossRef Google Scholar

    [59] Yu C L, Xiao Y L, Wang Y Y, et al. Lithium isotopic compositions of Mesozoic and Cenozoic basalts from South-Eastern China: implications for extremely low δ7Li of continental-type eclogites [J]. Frontiers in Earth Science, 2022, 10: 844353. doi: 10.3389/feart.2022.844353

    CrossRef Google Scholar

    [60] Lynton S J, Walker R J, Candela P A. Lithium isotopes in the system Qz-Ms-fluid: an experimental study [J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3337-3347. doi: 10.1016/j.gca.2005.02.009

    CrossRef Google Scholar

    [61] Yang D, Hou Z Q, Zhao Y, et al. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system [J]. Scientific Reports, 2015, 5: 13812. doi: 10.1038/srep13812

    CrossRef Google Scholar

    [62] Verney-Carron A, Vigier N, Millot R. Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering [J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3452-3468. doi: 10.1016/j.gca.2011.03.019

    CrossRef Google Scholar

    [63] Marschall H R, Tang M. High-temperature processes: is it time for lithium isotopes? [J]. Elements, 2020, 16(4): 247-252. doi: 10.2138/gselements.16.4.247

    CrossRef Google Scholar

    [64] Niu Y L. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean Ridges [J]. Journal of Petrology, 2004, 45(12): 2423-2458. doi: 10.1093/petrology/egh068

    CrossRef Google Scholar

    [65] Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges [J]. Comptes Rendus Geoscience, 2003, 335(10-11): 825-852. doi: 10.1016/j.crte.2003.08.006

    CrossRef Google Scholar

    [66] McCollom T M, Shock E L. Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration [J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B1): 547-575. doi: 10.1029/97JB02603

    CrossRef Google Scholar

    [67] Hansen C T, Meixner A, Kasemann S A, et al. New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations [J]. Geochimica et Cosmochimica Acta, 2017, 217: 51-79. doi: 10.1016/j.gca.2017.08.014

    CrossRef Google Scholar

    [68] Wunder B, Meixner A, Romer R L, et al. Li-isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment [J]. European Journal of Mineralogy, 2011, 23(3): 333-342. doi: 10.1127/0935-1221/2011/0023-2095

    CrossRef Google Scholar

    [69] Wunder B, Deschamps F, Watenphul A, et al. The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation [J]. Contributions to Mineralogy and Petrology, 2010, 159(6): 781-790. doi: 10.1007/s00410-009-0454-x

    CrossRef Google Scholar

    [70] Dohmen R, Kasemann S A, Coogan L, et al. Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model [J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 274-292. doi: 10.1016/j.gca.2009.10.016

    CrossRef Google Scholar

    [71] Richter F, Watson B, Chaussidon M, et al. Lithium isotope fractionation by diffusion in minerals. Part 1: pyroxenes [J]. Geochimica et Cosmochimica Acta, 2014, 126: 352-370. doi: 10.1016/j.gca.2013.11.008

    CrossRef Google Scholar

    [72] 陈洁, 龚迎莉, 陈露, 等. 镁同位素地球化学研究新进展及其在碳酸岩研究中的应用[J]. 地球科学, 2021, 46(12):4366-4389 doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112010

    CrossRef Google Scholar

    CHEN Jie, GONG Yingli, CHEN Lu, et al. New advances in magnesium isotope geochemistry and its application to carbonatite rocks [J]. Earth Science, 2021, 46(12): 4366-4389. doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112010

    CrossRef Google Scholar

    [73] Huang J, Ke S, Gao Y J, et al. Magnesium isotopic compositions of altered oceanic basalts and gabbros from IODP site 1256 at the East Pacific Rise [J]. Lithos, 2015, 231: 53-61. doi: 10.1016/j.lithos.2015.06.009

    CrossRef Google Scholar

    [74] Huang J, Liu S A, Gao Y J, et al. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific [J]. Journal of Geophysical Research:Solid Earth, 2016, 121(10): 7086-7100. doi: 10.1002/2016JB013095

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(2408) PDF downloads(187) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint