2021 Vol. 41, No. 5
Article Contents

ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. doi: 10.16562/j.cnki.0256-1492.2021070101
Citation: ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, LI Xiaohui, QI Haiyan, WANG Xiaoyuan, CHEN Shuai, YIN Xuebo. Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 12-24. doi: 10.16562/j.cnki.0256-1492.2021070101

Seafloor hydrothermal system and its magmatic setting in the western Pacific back-arc basins

  • The study of seafloor hydrothermal system and its magmatic setting can provide effective research support for understanding the material and heat exchange processes across the multi-spheric fluid-solid interfaces in the western Pacific. In order to reveal the magmatic activities, mineral deposition and environmental responses to plate subduction, the magmatic setting of Okinawa Trough hydrothermal systems, hydrothermal plume of Manus basin, isotopic composition of sulfide and basalt in back arc basins and mid-ocean ridges are carefully studied in this paper. The petrographic, mineralogical, major and trace elements, and isotopic composition for basalt, andesite, trachyandesite, dacite, rhyolite and their basic magmatic enclaves near the Okinawa Trough hydrothermal field have been carried out, whereas the hydrothermal plume and seawater measurement in PACMANUS and Desmos hydrothermal fields of the Manus basin studied. The results have successfully revealed the magmatic mixing process and time scale, the deep magmatic chamber and magma evolution process, the contribution of magma to the hydrothermal system in the Okinawa Trough as well as the influence of subduction serpentine on magmatic activity in the southern Ryukyu subduction zone. Melt inclusions are used as the mean to study the evolution of the back-arc basin magma, and the new evidence of the source of basaltic magma in the Okinawa Trough. The origin of iron, copper and zinc in the sulfide and basalts of the mid-ocean ridges and the back-arc basins, and the iron, copper, and zinc isotopic fractionation during sulfide formation and magmatic activity are discussed. The physical and chemical spatial pattern and material composition characteristics of the hydrothermal plume have been defined. It seems that the diffusion depth of the hydrothermal plume is affected by local seawater depth and bottom current, and the concentration anomaly of the dissolved Fe may remain for longer time than dissolved Mn during lateral plume dispersal. In the future, non-traditional stable isotopes and volatile analytical technology should be adopted for further understanding of the relationship between hydrothermal activity and magmatism under plate subduction environment taking the western Pacific as a research case so as to know more about the seafloor hydrothermal system and its ore-forming processes.

  • 加载中
  • [1] 曾志刚, 陈祖兴, 张玉祥, 等. 海底热液活动的环境与产物[J]. 海洋科学, 2020, 44(7):143-155 doi: 10.11759/hykx20200316001

    CrossRef Google Scholar

    ZENG Zhigang, CHEN Zuxing, ZHANG Yuxiang, et al. Seafloor hydrothermal activities and their geological environments and products [J]. Marine Sciences, 2020, 44(7): 143-155. doi: 10.11759/hykx20200316001

    CrossRef Google Scholar

    [2] Zeng Z G, Chen Z X, Zhang Y X, et al. Geological, physical, and chemical characteristics of seafloor hydrothermal vent fields [J]. Journal of Oceanology and Limnology, 2020, 38(4): 985-1007. doi: 10.1007/s00343-020-0123-5

    CrossRef Google Scholar

    [3] 曾志刚. 东太平洋海隆热液地质[M]. 北京: 科学出版社, 2020.

    Google Scholar

    ZENG Zhigang. Submarine Hydrothermal Geology of the East Pacific Rise[M]. Beijing: Science Press, 2020.

    Google Scholar

    [4] Bebout G E. Chemical and isotopic cycling in subduction zones[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Inc. , 2014: 703-747.

    Google Scholar

    [5] Bindeman I N, Eiler J M, Yogodzinski G M, et al. Oxygen isotope evidence for slab melting in modern and ancient subduction zones [J]. Earth and Planetary Science Letters, 2005, 235(3-4): 480-496. doi: 10.1016/j.jpgl.2005.04.014

    CrossRef Google Scholar

    [6] Duggen S, Portnyagin M, Baker J, et al. Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting [J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 452-480. doi: 10.1016/j.gca.2006.09.018

    CrossRef Google Scholar

    [7] Harvey J, Garrido C J, Savov I, et al. 11B-rich fluids in subduction zones: The role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle [J]. Chemical Geology, 2014, 376: 20-30. doi: 10.1016/j.chemgeo.2014.03.015

    CrossRef Google Scholar

    [8] Kendrick M A, Arculus R J, Danyushevsky L V, et al. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins [J]. Earth and Planetary Science Letters, 2014, 400: 165-176. doi: 10.1016/j.jpgl.2014.05.021

    CrossRef Google Scholar

    [9] Scambelluri M, Pettke T, Cannaò E. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps) [J]. Earth and Planetary Science Letters, 2015, 429: 45-59. doi: 10.1016/j.jpgl.2015.07.060

    CrossRef Google Scholar

    [10] Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: A review [J]. Lithos, 2013, 170-171: 208-223. doi: 10.1016/j.lithos.2013.02.016

    CrossRef Google Scholar

    [11] Ryan J G, Chauvel C. The subduction-zone filter and the impact of recycled materials on the evolution of the mantle[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Inc. , 2014, 3: 479-508.

    Google Scholar

    [12] Ague J J, Nicolescu S. Carbon dioxide released from subduction zones by fluid-mediated reactions [J]. Nature Geoscience, 2014, 7(5): 355-360. doi: 10.1038/ngeo2143

    CrossRef Google Scholar

    [13] John T, Gussone N, Podladchikov Y Y, et al. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs [J]. Nature Geoscience, 2012, 5(7): 489-492. doi: 10.1038/ngeo1482

    CrossRef Google Scholar

    [14] Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives[M]//Christie D M, Fisher C R, Lee S M, et al. Back-Arc Spreading Systems; Geological, Biological, Chemical, and Physical Interactions. Washington: American Geophysical Union, 2006, 166: 63-86.

    Google Scholar

    [15] Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Nature, 1993, 362(6422): 739-743. doi: 10.1038/362739a0

    CrossRef Google Scholar

    [16] Schmidt M W, Jagoutz O. The global systematics of primitive arc melts [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2817-2854. doi: 10.1002/2016GC006699

    CrossRef Google Scholar

    [17] Taylor B, Martinez F. Back-arc basin basalt systematics [J]. Earth and Planetary Science Letters, 2003, 210(3-4): 481-497. doi: 10.1016/S0012-821X(03)00167-5

    CrossRef Google Scholar

    [18] Timm C, Davy B, Haase K, et al. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc [J]. Nature Communications, 2014, 5: 4923. doi: 10.1038/ncomms5923

    CrossRef Google Scholar

    [19] Turner S, Caulfield J, Turner M, et al. Recent contribution of sediments and fluids to the mantle’s volatile budget [J]. Nature Geoscience, 2012, 5: 50-54. doi: 10.1038/ngeo1325

    CrossRef Google Scholar

    [20] Bouvier A S, Manzini M, Rose-Koga E F, et al. Tracing of Cl input into the sub-arc mantle through the combined analysis of B, O and Cl isotopes in melt inclusions [J]. Earth and Planetary Science Letters, 2019, 507: 30-39. doi: 10.1016/j.jpgl.2018.11.036

    CrossRef Google Scholar

    [21] De Hoog J C M, Savov I P. Boron isotopes as a tracer of subduction zone processes[M]//Marschall H, Foster G. Boron Isotopes. Cham: Springer, 2018: 217-247.

    Google Scholar

    [22] Debret B, Koga K T, Nicollet C, et al. F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth [J]. Terra Nova, 2014, 26(2): 96-101. doi: 10.1111/ter.12074

    CrossRef Google Scholar

    [23] Hu Y, Teng F Z, Plank T, et al. Magnesium isotopic composition of subducting marine sediments [J]. Chemical Geology, 2017, 466: 15-31. doi: 10.1016/j.chemgeo.2017.06.010

    CrossRef Google Scholar

    [24] Nielsen S G, Horner T J, Pryer H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle [J]. Science Advances, 2018, 4(7): eaas8675. doi: 10.1126/sciadv.aas8675

    CrossRef Google Scholar

    [25] Nielsen S G, Yogodzinski G, Prytulak J, et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2016, 181: 217-237. doi: 10.1016/j.gca.2016.03.010

    CrossRef Google Scholar

    [26] Palmer M R. Boron cycling in subduction zones [J]. Elements, 2017, 13(4): 237-242. doi: 10.2138/gselements.13.4.237

    CrossRef Google Scholar

    [27] Teng F Z, Hu Y, Chauvel C. Magnesium isotope geochemistry in arc volcanism [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7082-7087. doi: 10.1073/pnas.1518456113

    CrossRef Google Scholar

    [28] Behn M D, Kelemen P B, Hirth G, et al. Diapirs as the source of the sediment signature in arc lavas [J]. Nature Geoscience, 2011, 4(9): 641-646. doi: 10.1038/ngeo1214

    CrossRef Google Scholar

    [29] Marschall H R, Schumacher J C. Arc magmas sourced from mélange diapirs in subduction zones [J]. Nature Geoscience, 2012, 5(12): 862-867. doi: 10.1038/ngeo1634

    CrossRef Google Scholar

    [30] Nielsen S G, Marschall H R. Geochemical evidence for mélange melting in global arcs [J]. Science Advances, 2017, 3(4): e1602402. doi: 10.1126/sciadv.1602402

    CrossRef Google Scholar

    [31] Codillo E A, Le Roux V, Marschall H R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge [J]. Nature Communications, 2018, 9(1): 2864. doi: 10.1038/s41467-018-05313-2

    CrossRef Google Scholar

    [32] Cruz-Uribe A M, Gaetani G A, Le Roux V, et al. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs—An experimental study [J]. Geology, 2018, 46(4): 343-346. doi: 10.1130/G39956.1

    CrossRef Google Scholar

    [33] Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana Subduction factory[M]//Inside the Subduction Factory. Washington, D C: American Geophysical Union, 2004: 175-222.

    Google Scholar

    [34] Woodhead J, Stern R J, Pearce J, et al. Hf-Nd isotope variation in Mariana Trough basalts: The importance of "ambient mantle" in the interpretation of subduction zone magmas [J]. Geology, 2012, 40(6): 539-542. doi: 10.1130/G32963.1

    CrossRef Google Scholar

    [35] Chauvel C, Marini J C, Plank T, et al. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(1): Q01001.

    Google Scholar

    [36] Tollstrup D L, Gill J B. Hafnium systematics of the Mariana arc: evidence for sediment melt and residual phases [J]. Geology, 2005, 33(9): 737-740. doi: 10.1130/G21639.1

    CrossRef Google Scholar

    [37] Alt J C, Shanks W C, Jackson M C. Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough [J]. Earth and Planetary Science Letters, 1993, 119(4): 477-494. doi: 10.1016/0012-821X(93)90057-G

    CrossRef Google Scholar

    [38] Barnes J D, Sharp Z D, Fischer T P. Chlorine isotope variations across the Izu-Bonin-Mariana arc [J]. Geology, 2008, 36(11): 883-886. doi: 10.1130/G25182A.1

    CrossRef Google Scholar

    [39] Stern R J, Kohut E, Bloomer S H, et al. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important? [J]. Contributions to Mineralogy and Petrology, 2006, 151(2): 202-221. doi: 10.1007/s00410-005-0055-2

    CrossRef Google Scholar

    [40] Hoang N, Uto K. Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’ entrapment of Pacific MORB mantle [J]. Earth and Planetary Science Letters, 2006, 249(3-4): 229-240. doi: 10.1016/j.jpgl.2006.07.021

    CrossRef Google Scholar

    [41] Yan Q S, Shi X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review [J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2

    CrossRef Google Scholar

    [42] Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B5): 10591-10608. doi: 10.1029/1999JB900040

    CrossRef Google Scholar

    [43] Guo K, Zhai S K, Yu Z H, et al. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: implications for the influence of subduction components and the contamination of crustal materials [J]. Journal of Marine Systems, 2018, 180: 140-151. doi: 10.1016/j.jmarsys.2016.11.009

    CrossRef Google Scholar

    [44] Zhang Y X, Zeng Z G, Li X H, et al. High-potassium volcanic rocks from the Okinawa Trough: implications for a cryptic potassium-rich and DUPAL-like source [J]. Geological Journal, 2018, 53(5): 1755-1766. doi: 10.1002/gj.3000

    CrossRef Google Scholar

    [45] Shu Y C, Nielsen S G, Zeng Z G, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: evidence from thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2017, 217: 462-491. doi: 10.1016/j.gca.2017.08.035

    CrossRef Google Scholar

    [46] Kendrick M A, Scambelluri M, Honda M, et al. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction [J]. Nature Geoscience, 2011, 4(11): 807-812. doi: 10.1038/ngeo1270

    CrossRef Google Scholar

    [47] Métrich N, Schiano P, Clocchiatti R, et al. Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines) [J]. Earth and Planetary Science Letters, 1999, 167(1-2): 1-14. doi: 10.1016/S0012-821X(99)00009-6

    CrossRef Google Scholar

    [48] Straub S M, Layne G D. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones [J]. Geochimica et Cosmochimica Acta, 2003, 67(21): 4179-4203. doi: 10.1016/S0016-7037(03)00307-7

    CrossRef Google Scholar

    [49] Wallace P J, Edmonds M. The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions [J]. Reviews in Mineralogy and Geochemistry, 2011, 73(1): 215-246. doi: 10.2138/rmg.2011.73.8

    CrossRef Google Scholar

    [50] Kelley K A, Plank T, Grove T L, et al. Mantle melting as a function of water content beneath back-arc basins [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B9): B09208.

    Google Scholar

    [51] Sun W D, Binns R A, Fan A C, et al. Chlorine in submarine volcanic glasses from the eastern manus basin [J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1542-1552. doi: 10.1016/j.gca.2006.12.003

    CrossRef Google Scholar

    [52] Holland G, Ballentine C J. Seawater subduction controls the heavy noble gas composition of the mantle [J]. Nature, 2006, 441(7090): 186-191. doi: 10.1038/nature04761

    CrossRef Google Scholar

    [53] Kendrick M A, Hémond C, Kamenetsky V S, et al. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere [J]. Nature Geoscience, 2017, 10(3): 222-228. doi: 10.1038/ngeo2902

    CrossRef Google Scholar

    [54] Barnes J D, Manning C E, Scambelluri M, et al. The behavior of halogens during subduction-zone processes[M]//Harlov D, Aranovich L. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Cham: Springer, 2018: 545-590.

    Google Scholar

    [55] Chavrit D, Burgess R, Sumino H, et al. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles [J]. Geochimica et Cosmochimica Acta, 2016, 183: 106-124. doi: 10.1016/j.gca.2016.03.014

    CrossRef Google Scholar

    [56] Kobayashi M, Sumino H, Nagao K, et al. Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge [J]. Earth and Planetary Science Letters, 2017, 457: 106-116. doi: 10.1016/j.jpgl.2016.10.012

    CrossRef Google Scholar

    [57] Sumino H, Burgess R, Mizukami T, et al. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite [J]. Earth and Planetary Science Letters, 2010, 294(1-2): 163-172. doi: 10.1016/j.jpgl.2010.03.029

    CrossRef Google Scholar

    [58] Alt J C, Shanks W C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling [J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 641-653. doi: 10.1016/S0016-7037(02)01142-0

    CrossRef Google Scholar

    [59] Orberger B, Mosbah M, Mevel C, et al. Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1999, 158(1-4): 575-581. doi: 10.1016/S0168-583X(99)00342-0

    CrossRef Google Scholar

    [60] Alt J C, Garrido C J, Shanks W C, et al. Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain [J]. Earth and Planetary Science Letters, 2012, 327-328: 50-60. doi: 10.1016/j.jpgl.2012.01.029

    CrossRef Google Scholar

    [61] Kendrick M A, Burgess R, Pattrick R A D, et al. Fluid inclusion noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids [J]. Geochimica et Cosmochimica Acta, 2001, 65(16): 2651-2668. doi: 10.1016/S0016-7037(01)00618-4

    CrossRef Google Scholar

    [62] Zeng Z G, Niedermann S, Chen S, et al. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: implications for heat fluxes and hydrothermal fluid processes [J]. Chemical Geology, 2015, 409: 1-11. doi: 10.1016/j.chemgeo.2015.05.007

    CrossRef Google Scholar

    [63] Hou Z Q, Zaw K, Li Y H, et al. Contribution of magmatic fluid to the active hydrothermal system in the JADE Field, Okinawa trough: evidence from fluid inclusions, oxygen and helium isotopes [J]. International Geology Review, 2005, 47(4): 420-437. doi: 10.2747/0020-6814.47.4.420

    CrossRef Google Scholar

    [64] Lüders V, Pracejus B, Halbach P. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan) [J]. Chemical Geology, 2001, 173(1-3): 45-58. doi: 10.1016/S0009-2541(00)00267-9

    CrossRef Google Scholar

    [65] 曾志刚, 秦蕴珊, 翟世奎. 冲绳海槽Jade热液区块状硫化物中流体包裹体的氦、氖、氩同位素组成[J]. 海洋学报, 2004, 23(4):655-661

    Google Scholar

    ZENG Zhigang, QIN Yunshan, ZHAI Shikui. Helium, neon and argon isotope compositions of fluid inclusions in massive sulfides from the Jade hydrothermal field, Okinawa Trough [J]. Acta Oceanologica Sinica, 2004, 23(4): 655-661.

    Google Scholar

    [66] Lüders V, Niedermann S. Helium isotope composition of fluid inclusions hosted in massive sulfides from modern submarine hydrothermal systems [J]. Economic Geology, 2010, 105(2): 443-449. doi: 10.2113/gsecongeo.105.2.443

    CrossRef Google Scholar

    [67] Webber A P, Roberts S, Burgess R, et al. Fluid mixing and thermal regimes beneath the PACMANUS hydrothermal field, Papua New Guinea: helium and oxygen isotope data [J]. Earth and Planetary Science Letters, 2011, 304(1-2): 93-102. doi: 10.1016/j.jpgl.2011.01.020

    CrossRef Google Scholar

    [68] Lee J Y, Marti K, Severinghaus J P, et al. A redetermination of the isotopic abundances of atmospheric Ar [J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4507-4512. doi: 10.1016/j.gca.2006.06.1563

    CrossRef Google Scholar

    [69] Mark D F, Stuart F M, De Podesta M. New high-precision measurements of the isotopic composition of atmospheric argon [J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7494-7501. doi: 10.1016/j.gca.2011.09.042

    CrossRef Google Scholar

    [70] Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc [J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B7): 14991-15019. doi: 10.1029/97JB00788

    CrossRef Google Scholar

    [71] Guo K, Zeng Z G, Chen S, et al. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios [J]. Journal of Asian Earth Sciences, 2017, 145: 205-216. doi: 10.1016/j.jseaes.2017.05.033

    CrossRef Google Scholar

    [72] Ribeiro J M, Stern R J, Kelley K A, et al. Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana forearc rift [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4585-4607. doi: 10.1002/ggge.20244

    CrossRef Google Scholar

    [73] Chen Z X, Zeng Z G, Yin X B, et al. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes [J]. Geological Journal, 2019, 54(1): 316-332. doi: 10.1002/gj.3179

    CrossRef Google Scholar

    [74] Zhang Y X, Zeng Z G, Yin X B, et al. Petrology and mineralogy of pumice from the Iheya North Knoll, Okinawa Trough: Implications for the differentiation of crystal-poor and volatile-rich melts in the magma chamber [J]. Geological Journal, 2018, 53(6): 2732-2745. doi: 10.1002/gj.3106

    CrossRef Google Scholar

    [75] Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization [J]. Nature, 2004, 431(7011): 975-978. doi: 10.1038/nature02972

    CrossRef Google Scholar

    [76] Sun W D, Arculus R J, Kamenetsky V S, et al. Metals and chlorine in the evolution of convergent margin magmas [J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A629.

    Google Scholar

    [77] 孙卫东, 胡艳华, 丁兴, 等. 汇聚板块边缘岩浆中金属和氯的地球化学性质研究[J]. 地学前缘, 2007, 14(2):139-148 doi: 10.3321/j.issn:1005-2321.2007.02.011

    CrossRef Google Scholar

    SUN Weidong, HU Yanhua, DING Xing, et al. The geochemical behaviors of some metals and chlorine during the evolution of convergent margin magmas [J]. Earth Science Frontiers, 2007, 14(2): 139-148. doi: 10.3321/j.issn:1005-2321.2007.02.011

    CrossRef Google Scholar

    [78] Jenner F E, O’Neill H S T C, Arculus R J, et al. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu [J]. Journal of Petrology, 2010, 51(12): 2445-2464. doi: 10.1093/petrology/egq063

    CrossRef Google Scholar

    [79] Li Z G, Chu F Y, Dong Y H, et al. Origin of selective enrichment of Cu and Au in sulfide deposits formed at immature back-arc ridges: Examples from the Lau and Manus basins [J]. Ore Geology Reviews, 2016, 74: 52-62. doi: 10.1016/j.oregeorev.2015.11.010

    CrossRef Google Scholar

    [80] Sun W, Bennett V C, Eggins S M, et al. Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results [J]. Chemical Geology, 2003, 196(1-4): 259-281. doi: 10.1016/S0009-2541(02)00416-3

    CrossRef Google Scholar

    [81] Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions [J]. Earth and Planetary Science Letters, 2004, 222(1): 101-114. doi: 10.1016/j.jpgl.2004.02.011

    CrossRef Google Scholar

    [82] Alt J C. Subseafloor processes in mid‐ocean ridge hydrothennal systems[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington D C: American Geophysical Union, 1995: 85-114.

    Google Scholar

    [83] Mottl M J, Holland H D. Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater [J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1103-1115. doi: 10.1016/0016-7037(78)90107-2

    CrossRef Google Scholar

    [84] Humphris S E, Klein F. Progress in deciphering the controls on the geochemistry of fluids in seafloor hydrothermal systems [J]. Annual Review of Marine Science, 2018, 10(1): 315-343. doi: 10.1146/annurev-marine-121916-063233

    CrossRef Google Scholar

    [85] Yang K H, Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system [J]. Nature, 1996, 383(6599): 420-423. doi: 10.1038/383420a0

    CrossRef Google Scholar

    [86] Marques A F A, Scott S D, Guillong M. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system [J]. Earth and Planetary Science Letters, 2011, 310(1-2): 145-160. doi: 10.1016/j.jpgl.2011.07.021

    CrossRef Google Scholar

    [87] Craddock P R, Bach W. Insights to magmatic–hydrothermal processes in the Manus back-arc basin as recorded by anhydrite [J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5514-5536. doi: 10.1016/j.gca.2010.07.004

    CrossRef Google Scholar

    [88] 王淑杰, 翟世奎, 于增慧, 等. 关于现代海底热液活动系统模式的思考[J]. 地球科学, 2018, 43(3):835-850

    Google Scholar

    WANG Shujie, ZHAI Shikui, YU Zenghui, et al. Reflections on model of modern seafloor hydrothermal system [J]. Earth Science, 2018, 43(3): 835-850.

    Google Scholar

    [89] Ikehata K, Suzuki R, Shimada K, et al. Mineralogical and geochemical characteristics of hydrothermal minerals collected from hydrothermal vent fields in the southern Mariana spreading center[M]//Ishibashi J, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 275-287.

    Google Scholar

    [90] Kakegawa T, Utsumi M, Marumo K. Geochemistry of sulfide chimneys and basement pillow lavas at the southern Mariana trough (12.55°N–12.58°N) [J]. Resource Geology, 2008, 58(3): 249-266. doi: 10.1111/j.1751-3928.2008.00060.x

    CrossRef Google Scholar

    [91] Ishibashi J I, Tsunogai U, Toki T, et al. Chemical composition of hydrothermal fluids in the central and southern Mariana Trough backarc basin[J] Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 126-136.

    Google Scholar

    [92] Halbach P, Hansmann W, Köppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough [J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073

    CrossRef Google Scholar

    [93] Hongo Y, Nozaki Y. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya Ridge vent field, Okinawa Trough [J]. Geochemical Journal, 2001, 35(5): 347-354. doi: 10.2343/geochemj.35.347

    CrossRef Google Scholar

    [94] Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: Implications for ore genesis and fluid circulation [J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014

    CrossRef Google Scholar

    [95] 曾志刚, 翟世奎, 杜安道. 冲绳海槽Jade热液区海底块状硫化物的Os同位素组成[J]. 海洋与湖沼, 2003, 34(4):407-413 doi: 10.3321/j.issn:0029-814X.2003.04.007

    CrossRef Google Scholar

    ZENG Zhigang, ZHAI Shikui, DU Andao. Os isotopic compositions of seafloor massive sulfides from the Jade hydrothermal field in the Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 2003, 34(4): 407-413. doi: 10.3321/j.issn:0029-814X.2003.04.007

    CrossRef Google Scholar

    [96] 曾志刚, 蒋富清, 秦蕴珊, 等. 冲绳海槽中部Jade热液活动区中块状硫化物的稀土元素地球化学特征[J]. 地质学报, 2001, 75(2):244-249 doi: 10.3321/j.issn:0001-5717.2001.02.014

    CrossRef Google Scholar

    ZENG Zhigang, JIANG Fuqing, QIN Yunshan, et al. Rare earth element geochemistry of massive sulphides from the Jade hydrothermal field in the Central Okinawa Trough [J]. Acta Geologica Sinica, 2001, 75(2): 244-249. doi: 10.3321/j.issn:0001-5717.2001.02.014

    CrossRef Google Scholar

    [97] 曾志刚, 蒋富清, 翟世奎, 等. 冲绳海槽Jade热浪活动区块状硫化物的铅同位素组成及其地质意义[J]. 地球化学, 2000, 29(3):239-245 doi: 10.3321/j.issn:0379-1726.2000.03.005

    CrossRef Google Scholar

    ZENG Zhigang, JIANG Fuqing, ZHAI Shikui, et al. Lead isotopic compositions of massive sulfides from the Jade hydrothermal field in the Okinawa Trough and its geological implications [J]. Geochimica, 2000, 29(3): 239-245. doi: 10.3321/j.issn:0379-1726.2000.03.005

    CrossRef Google Scholar

    [98] 侯增谦, 李延河, 艾永德, 等. 冲绳海槽活动热水成矿系统的氦同位素组成: 幔源氦证据[J]. 中国科学(D辑), 1999, 29(2):155-162 doi: 10.3969/j.issn.1674-7240.1999.02.008

    CrossRef Google Scholar

    HOU Zengqian, LI Yanhe, AI Yongde, et al. The helium isotopic compositions of activity hydrothermal system in the Okinawa Trough: mantle-derived helium evidence [J]. Science in China Series D-Earth Sciences (in Chinese), 1999, 29(2): 155-162. doi: 10.3969/j.issn.1674-7240.1999.02.008

    CrossRef Google Scholar

    [99] 刘焱光, 孟宪伟, 付云霞. 冲绳海槽Jade热液场烟囱物稀土元素和锶、钕同位素地球化学特征[J]. 海洋学报, 2005, 27(5):67-72

    Google Scholar

    LIU Yanguang, MENG Xianwei, FU Yunxia. Rare earth element and strontium-neodymium isotope characteristics of hydrothermal chimney in Jade area in the Okinawa Trough [J]. Acta Oceanologica Sinica, 2005, 27(5): 67-72.

    Google Scholar

    [100] 侯增谦, 艾永德, 曲晓明, 等. 岩浆流体对冲绳海槽海底成矿热水系统的可能贡献[J]. 地质学报, 1999, 73(1):57-65 doi: 10.3321/j.issn:0001-5717.1999.01.007

    CrossRef Google Scholar

    HOU Zengqian, AI Yongde, QU Xiaoming, et al. Possible contribution of magmatic fluids to seafloor ore-forming hydrothermal system in the Okinawa Trough [J]. Acta Geologica Sinica, 1999, 73(1): 57-65. doi: 10.3321/j.issn:0001-5717.1999.01.007

    CrossRef Google Scholar

    [101] 侯增谦, 张绮玲. 冲绳海槽现代活动热水区CO2-烃类流体: 流体包裹体证据[J]. 中国科学(D辑), 1998, 28(2):142-148 doi: 10.3321/j.issn:1006-9267.1998.02.006

    CrossRef Google Scholar

    HOU Zengqian, ZHANG Qiling. CO2-Hydrocarbon fluids of the Jade hydrothermal field in the Okinawa Trough: fluid inclusion evidence [J]. Science in China Series D-Earth Sciences, 1998, 28(2): 142-148. doi: 10.3321/j.issn:1006-9267.1998.02.006

    CrossRef Google Scholar

    [102] Chen Z X, Zeng Z G, Wang X Y, et al. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales [J]. Lithos, 2020, 376-377: 105776. doi: 10.1016/j.lithos.2020.105776

    CrossRef Google Scholar

    [103] Chen Z X, Zeng Z G, Tamehe L S, et al. Magmatic sulfide saturation and dissolution in the basaltic andesitic magma from the Yaeyama Central Graben, southern Okinawa Trough [J]. Lithos, 2021, 388-389: 106082. doi: 10.1016/j.lithos.2021.106082

    CrossRef Google Scholar

    [104] 陈祖兴, 曾志刚, 王晓媛, 等. 岩浆房持续的时间: 矿物内元素扩散年代学研究进展及展望[J]. 地球科学进展, 2020, 35(12):1232-1242

    Google Scholar

    CHEN Zuxing, ZENG Zhigang, WANG Xiaoyuan, et al. Duration of magma chamber: Progress and prospect of element diffusion chronometry of minerals [J]. Advances in Earth Science, 2020, 35(12): 1232-1242.

    Google Scholar

    [105] Li X H, Zeng Z G, Dan W, et al. Source lithology and crustal assimilation recorded in low δ18O olivine from Okinawa Trough, back-arc basin [J]. Lithos, 2020, 360-361: 105444. doi: 10.1016/j.lithos.2020.105444

    CrossRef Google Scholar

    [106] Li X H, Zeng Z G, Yang H X, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: Insights into petrogenesis and the influence of subduction component [J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320

    CrossRef Google Scholar

    [107] Li X H, Ren Z Y, Zeng Z G, et al. Petrogenesis of middle Okinawa Trough volcanic rocks: Constraints from lead isotopes in olivine-hosted melt inclusions [J]. Chemical Geology, 2020, 543: 119600. doi: 10.1016/j.chemgeo.2020.119600

    CrossRef Google Scholar

    [108] Zhang Y X, Zeng Z G, Gaetani G, et al. Mineralogical constraints on the magma mixing beneath the Iheya Graben, an active back-arc spreading centre of the Okinawa trough [J]. Journal of Petrology, 2020, 61(9): egaa098.

    Google Scholar

    [109] Zhang Y X, Gaetani G, Zeng Z G, et al. Halogen (F, Cl) concentrations and Sr-Nd-Pb-B isotopes of the basaltic andesites from the southern Okinawa Trough: Implications for the recycling of subducted serpentinites [J]. Journal of Geophysical Research:Solid Earth, 2021, 126(3): e2021JB021709.

    Google Scholar

    [110] 张玉祥, 曾志刚, 王晓媛, 等. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7):678-690

    Google Scholar

    ZHANG Yuxiang, ZENG Zhigang, WANG Xiaoyuan, et al. Geologic control on hydrothermal activities in the Okinawa Trough [J]. Advances in Earth Science, 2020, 35(7): 678-690.

    Google Scholar

    [111] Zeng Z G, Wang X Y, Murton B J, et al. Dispersion and intersection of hydrothermal plumes in the Manus back-arc basin, western pacific [J]. Geofluids, 2020, 2020: 4260806. doi: 10.1155/2020/4260806

    CrossRef Google Scholar

    [112] Zeng Z G, Li X H, Chen S, et al. Iron, copper, and zinc isotopic fractionation in seafloor basalts and hydrothermal sulfides [J]. Marine Geology, 2021, 436: 106491. doi: 10.1016/j.margeo.2021.106491

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1078) PDF downloads(30) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint