2021 Vol. 41, No. 5
Article Contents

LIU Jian, DUAN Zongqi, MEI Xi, LIU Qingsong, ZHANG Xunhua, GUO Xingwei, WU Zhiqiang, WANG Hong, WANG Feifei, CHEN Bin, ZHANG Xin, AN Yuhui. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43. doi: 10.16562/j.cnki.0256-1492.2021101701
Citation: LIU Jian, DUAN Zongqi, MEI Xi, LIU Qingsong, ZHANG Xunhua, GUO Xingwei, WU Zhiqiang, WANG Hong, WANG Feifei, CHEN Bin, ZHANG Xin, AN Yuhui. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43. doi: 10.16562/j.cnki.0256-1492.2021101701

Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea

More Information
  • The Core of CSDP-2, which is more than 2800 m long, was retrieved from the Central Uplift of the South Yellow Sea, of which the Mesozoic-Paleozoic strata of the core have become a hot topic under research. However, research results of the uppermost sequence, 592 m in thickness made up of unconsolidated loose sediments, have not yet been reported so far. We have carried out paleomagnetic measurements, optically stimulated luminescence (OSL) dating, identification of benthic foraminifera and analyses of sedimentary facies for the sequence, in order to make its stratigraphic classification and reveal its history of sedimentary evolution. The results indicate that the 592 m- thick sequence came into being about 5.2 Ma, with its Quaternary bottom boundary at ~227.91 m of 2.59 Ma, the Lower and Middle Pleistocene boundary at ~65.23 m of 0.78 Ma, and the Middle - Upper Pleistocene boundary at 47.34 m of 128 ka, and covered by the Upper Pleistocene, which could be further subdivided into several sedimentary intervals formed during MIS 5, MIS 4, MIS 3 and MIS 1, while the MIS 2 deposits are missing. Also the results demonstrate that the denudation took place on the Central Uplift during Neogene and came to an end at ~5.2 Ma, followed by the deposition of fluvial deposits from ~5.2 to ~1.7 Ma, which was ceased as the first marine transgression took place in the region since Cenozoic presumably due to subsidence of the Zhe-Min Uplift. From ~1.7 to ~0.83 Ma, there was an alternation of tidal-flat and coastal deposits, and then from ~0.83 to the present the marine environments during high sea-level stands of the interglacial times were close to the marine environment of today in the region, due to the further subsidence of the Zhe-Min Uplift. On the western shelf of the South Yellow Sea, there was a cold water mass during MIS 5, which is broader than that of nowadays, and fluvial, deltaic, fluvial and coastal to inner-shelf environments prevailed successively during MIS 4, early MIS 3, late MIS 3 to MIS 2, and MIS 1. The sedimentary sequence was primarily controlled by tectonic subsidence and sea-level changes, and the sedimentation rates decreased evidently from the Holocene deposits to the Pleistocene and to the whole sequence, owing to the incompleteness of the older sediments comparing to the younger ones. Especially the pre-Late Pleistocene strata are marked by distinct erosion. The results of this study have provided new evidence for better understanding the evolution of sedimentary environments and the formation mechanism of strata in the western South Yellow Sea shelf since late Neogene.

  • 加载中
  • [1] 庞玉茂, 张训华, 肖国林, 等. 下扬子南黄海沉积盆地构造地质特征[J]. 地质论评, 2016, 62(3):604-616

    Google Scholar

    PANG Yumao, ZHANG Xunhua, XIAO Guolin, et al. Structural and geological characteristics of the South Yellow Sea Basin in lower Yangtze block [J]. Geological Review, 2016, 62(3): 604-616.

    Google Scholar

    [2] 庞玉茂, 张训华, 郭兴伟, 等. 南黄海北部盆地中、新生代构造热演化史模拟研究[J]. 地球物理学报, 2017, 60(8):3177-3190 doi: 10.6038/cjg20170824

    CrossRef Google Scholar

    PANG Yumao, ZHANG Xunhua, GUO Xingwei, et al. Mesozoic and Cenozoic tectono-thermal evolution modeling in the Northern South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2017, 60(8): 3177-3190. doi: 10.6038/cjg20170824

    CrossRef Google Scholar

    [3] 姚永坚, 夏斌, 冯志强, 等. 南黄海古生代以来构造演化[J]. 石油实验地质, 2005, 27(2):124-128 doi: 10.3969/j.issn.1001-6112.2005.02.005

    CrossRef Google Scholar

    YAO Yongjian, XIA Bin, FENG Zhiqiang, et al. Tectonic evolution of the South Yellow Sea since the Paleozoic [J]. Petroleum Geology & Experiment, 2005, 27(2): 124-128. doi: 10.3969/j.issn.1001-6112.2005.02.005

    CrossRef Google Scholar

    [4] 侯方辉, 张志珣, 张训华, 等. 南黄海盆地地质演化及构造样式地震解释[J]. 海洋地质与第四纪地质, 2008, 28(5):61-68

    Google Scholar

    HOU Fanghui, ZHANG Zhixun, ZHANG Xunhua, et al. Geologic evolution and tectonic styles in the South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2008, 28(5): 61-68.

    Google Scholar

    [5] 杨长清, 董贺平, 李刚. 南黄海盆地中部隆起的形成与演化[J]. 海洋地质前沿, 2014, 30(7):17-21,33

    Google Scholar

    YANG Changqing, DONG Heping, LI Gang. Formation and tectonic evolution of the central uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 17-21,33.

    Google Scholar

    [6] Pang Y M, Guo X W, Han Z Z, et al. Mesozoic–Cenozoic denudation and thermal history in the Central Uplift of the South Yellow Sea Basin and the implications for hydrocarbon systems: constraints from the CSDP-2 borehole [J]. Marine and Petroleum Geology, 2019, 99: 355-369. doi: 10.1016/j.marpetgeo.2018.10.027

    CrossRef Google Scholar

    [7] Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea [J]. Quaternary Science Reviews, 2016, 144: 1-15. doi: 10.1016/j.quascirev.2016.05.025

    CrossRef Google Scholar

    [8] Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~ 3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications [J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005

    CrossRef Google Scholar

    [9] Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing? [J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002

    CrossRef Google Scholar

    [10] 张晓华, 张训华, 吴志强, 等. 南黄海中部隆起中-古生代地层发育新认识: 基于大陆架科学钻探CSDP-02井钻探成果[J]. 地球物理学报, 2018, 61(6):2369-2379 doi: 10.6038/cjg2018L0124

    CrossRef Google Scholar

    ZHANG Xiaohua, ZHANG Xunhua, WU Zhiqiang, et al. New understanding of Mesozoic-Paleozoic strata in the central uplift of the South Yellow Sea basin from the drilling of well CSDP-02 of the “continental shelf drilling program” [J]. Chinese Journal of Geophysics, 2018, 61(6): 2369-2379. doi: 10.6038/cjg2018L0124

    CrossRef Google Scholar

    [11] 郭兴伟, 朱晓青, 牟林, 等. 南黄海中部隆起二叠纪-三叠纪菊石的发现及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3):121-128

    Google Scholar

    GUO Xingwei, ZHU Xiaoqing, MU Lin, et al. Discovery of Permian-Triassic ammonoids in the central uplift of the South Yellow Sea and its geological implications [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 121-128.

    Google Scholar

    [12] 蔡来星, 郭兴伟, 徐朝晖, 等. 南黄海盆地中部隆起上古生界沉积环境探讨[J]. 沉积学报, 2018, 36(4):695-705

    Google Scholar

    CAI Laixing, GUO Xingwei, XU Zhaohui, et al. Depositional environment of upper Paleozoic in the central uplift of the South Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 695-705.

    Google Scholar

    [13] Cai L X, Xiao G L, Guo X W, et al. Assessment of Mesozoic and Upper Paleozoic source rocks in the South Yellow Sea Basin based on the continuous borehole CSDP-2 [J]. Marine and Petroleum Geology, 2019, 101: 30-42. doi: 10.1016/j.marpetgeo.2018.11.028

    CrossRef Google Scholar

    [14] Guo X W, Xu H H, Zhu X Q, et al. Discovery of Late Devonian plants from the southern Yellow Sea borehole of China and its palaeogeographical implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108444. doi: 10.1016/j.palaeo.2017.08.039

    CrossRef Google Scholar

    [15] 吴志强, 郭兴伟, 祁江豪, 等. 大陆架科学钻探南黄海CSDP-2井的垂直地震剖面资料采集技术[J]. 海洋地质与第四纪地质, 2018, 38(3):199-207

    Google Scholar

    WU Zhiqiang, GUO Xingwei, QI Jianghao, et al. Vertical seismic profiling data acquisition from Well CSDP-2 in the Central uplift of South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 199-207.

    Google Scholar

    [16] 许薇龄. 论南黄海区的两个新生代盆地[J]. 海洋地质研究, 1982, 2(1):66-78

    Google Scholar

    XU Weiling. Discussion on the two Cenozoic Basins of the South Yellow Sea [J]. Marine Geological Research, 1982, 2(1): 66-78.

    Google Scholar

    [17] 陈沪生, 张永鸿, 徐师文, 等. 下扬子及邻区岩石圈结构构造特征与油气资源评价[M]. 北京: 地质出版社, 1999: 1-287

    Google Scholar

    CHEN Husheng, ZHANG Yonghong, XU Shiwen, et al. The Lithospheric Textural and Structural Features as Well as Oil and Gas Evaluation in the Lower Yangtze Area and its Adjacent Region, China[M]. Beijing: Geological Publishing House, 1999: 1-287. ]

    Google Scholar

    [18] 邱检生, 胡建, 李真, 等. 大别—苏鲁造山带变质岩原岩组合与闽浙沿海晚中生代岩浆岩组合的对比: 对扬子板块北东缘新元古构造属性的启示[J]. 高校地质学报, 2010, 16(4):413-425 doi: 10.3969/j.issn.1006-7493.2010.04.001

    CrossRef Google Scholar

    QIU Jiansheng, HU Jian, LI Zhen, et al. Comparison of protolith assemblages of metamorphic rocks in the Dabie-Sulu Orogen and the late Mesozoic magmatic rock associations in the coastal region of Zhejiang and Fujian provinces: implications for the neoproterozoic tectonic setting of northeastern Yangtze Block [J]. Geological Journal of China Universities, 2010, 16(4): 413-425. doi: 10.3969/j.issn.1006-7493.2010.04.001

    CrossRef Google Scholar

    [19] 侯方辉, 郭兴伟, 吴志强, 等. 南黄海有关地层与构造的研究进展及问题讨论[J]. 吉林大学学报:地球科学版, 2019, 49(1):96-105

    Google Scholar

    HOU Fanghui, GUO Xingwei, WU Zhiqiang, et al. Research progress and discussion on formation and tectonics of South Yellow Sea [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1): 96-105.

    Google Scholar

    [20] Jin X L, Yu P Z. Tectonics of the Yellow Sea and the East China Sea[M]//C. A. O. S. IOCAS (Institute of Oceanology). Beijing: The Geology of the Yellow Sea and the East China Sea Science Press, 1982: 1-22.

    Google Scholar

    [21] 沈淑敏, 郑芳芳, 刘文英. 中国东南大陆边缘地区中、新生代构造特点与构造应力场[J]. 中国地质科学院地质力学研究所所刊, 1986(8):9-34

    Google Scholar

    SHEN Shumin, ZHENG Fangfang, LIU Wenying. Mesozoic-Cenozoic tectonic features of southeast China continental margin and the tectonic stress field [J]. Bulletin of the Institute of Geomechanics CAGS, 1986(8): 9-34.

    Google Scholar

    [22] 杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366

    Google Scholar

    YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron [J]. Acta Geologica Sinica, 1993, 67(4): 357-366.

    Google Scholar

    [23] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003

    CrossRef Google Scholar

    [24] Gao X B, Ou J, Guo S Q, et al. Sedimentary history of the coastal plain of the south Yellow Sea since 5.1 Ma constrained by high-resolution magnetostratigraphy of onshore borehole core GZK01 [J]. Quaternary Science Reviews, 2020, 239: 106355. doi: 10.1016/j.quascirev.2020.106355

    CrossRef Google Scholar

    [25] 舒强, 萧家仪, 赵志军, 等. 苏北盆地XH-1钻孔0.78 Ma以来的气候环境变化记录[J]. 地层学杂志, 2010, 34(1): 27-34

    Google Scholar

    SHU Qiang, XIAO Jiayi, ZHAO Zhijun, et al. Environmental records in XH-1 core in northern Jiangsu Basin since about 780 ka B. P. [J]. Journal of Stratigraphy, 2010, 34(1): 27-34.

    Google Scholar

    [26] Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol [J]. Radiation Measurements, 2000, 32(1): 57-73. doi: 10.1016/S1350-4487(99)00253-X

    CrossRef Google Scholar

    [27] Roberts H M, Duller G A T. Standardised growth curves for optical dating of sediment using multiple-grain aliquots [J]. Radiation Measurements, 2004, 38(2): 241-252. doi: 10.1016/j.radmeas.2003.10.001

    CrossRef Google Scholar

    [28] Lai Z P. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau [J]. Radiation Measurements, 2006, 41(1): 9-16. doi: 10.1016/j.radmeas.2005.06.031

    CrossRef Google Scholar

    [29] 中华人民共和国国家质量监督检验检疫总局. GB/T 12763.8-2007 海洋调查规范 第8部分: 海洋地质地球物理调查[S]. 北京: 中国标准出版社, 2008: 7-9

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 12763.8-2007 Specifications for oceanographic survey—Part 8: marine geology and geophysics survey[S]. Beijing: Standards Press of China, 2008: 7-9. ]

    Google Scholar

    [30] Amorosi A, Pavesi M, Lucchi M R, et al. Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po Plain, Italy [J]. Sedimentary Geology, 2008, 209(1-4): 58-68. doi: 10.1016/j.sedgeo.2008.06.010

    CrossRef Google Scholar

    [31] Guion P D, Fulton I M, Jones N S. Sedimentary facies of the coal-bearing Westphalian A and B north of the Wales-Brabant High [J]. Geological Society, London, Special Publications, 1995, 82: 45-78. doi: 10.1144/GSL.SP.1995.082.01.03

    CrossRef Google Scholar

    [32] Duan Z Q, Liu Q S, Shi X F, et al. Reconstruction of high-resolution magnetostratigraphy of the Changjiang (Yangtze) River Delta, China [J]. Geophysical Journal International, 2016, 204(2): 948-960. doi: 10.1093/gji/ggv497

    CrossRef Google Scholar

    [33] Duan Z Q, Liu Q S, Gai C C, et al. Magnetostratigraphic and environmental implications of greigite (Fe3S4) formation from Hole U1433A of the IODP Expedition 349, South China Sea [J]. Marine Geology, 2017, 394: 82-97. doi: 10.1016/j.margeo.2017.02.008

    CrossRef Google Scholar

    [34] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data [J]. Geophysical Journal of the Royal Astronomical Society, 1980, 62(3): 699-718. doi: 10.1111/j.1365-246X.1980.tb02601.x

    CrossRef Google Scholar

    [35] Gradstein F M, Ogg J G, Schmitz M D, et al. The Geologic Time Scale[M]. Boston: Elsevier, 2012: 1-1144.

    Google Scholar

    [36] 张茂恒, 李吉均, 舒强, 等. 兴化XH-1孔记录的苏北盆地晚新生代沉积体系及环境变化过程[J]. 地理研究, 2011, 30(3):513-522

    Google Scholar

    ZHANG Maoheng, LI Jijun, SHU Qiang, et al. The sediments sequence and environmental oscillation of the core XH-1 in Subei Basin since late Cenozoic [J]. Geographical Research, 2011, 30(3): 513-522.

    Google Scholar

    [37] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change [J]. Science, 2005, 310(5752): 1293-1298. doi: 10.1126/science.1116412

    CrossRef Google Scholar

    [38] 杨子赓, 林和茂, 王圣洁, 等. 对末次间冰期南黄海古冷水团沉积的探讨[J]. 海洋地质与第四纪地质, 1998, 18(1):47-58

    Google Scholar

    YANG Zigeng, LIN Hemao, WANG Shengjie, et al. A study of the ancient Cold Water Mass sediments in South Yellow Sea during Last Interglacial [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 47-58.

    Google Scholar

    [39] Chappell J, Omura A, Esat T, et al. Reconciliaion of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records [J]. Earth and Planetary Science Letter, 1996, 141(1-4): 227-236. doi: 10.1016/0012-821X(96)00062-3

    CrossRef Google Scholar

    [40] Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze Shoal in response to the post-glacial transgression of the paleo-Yangtze (Changjiang) estuary, China [J]. Marine Geology, 2020, 423: 106080. doi: 10.1016/j.margeo.2019.106080

    CrossRef Google Scholar

    [41] Sommerfield C K. On sediment accumulation rates and stratigraphic completeness: lessons from Holocene ocean margins [J]. Continental Shelf Research, 2006, 26(17-18): 2225-2240. doi: 10.1016/j.csr.2006.07.015

    CrossRef Google Scholar

    [42] 管秉贤. 黄、东海浅海水文学的主要特征[J]. 黄渤海海洋, 1985, 3(4):1-10

    Google Scholar

    HUANG Bingxian. Major features of the shallow water hydrography in the East China Sea and Huanghai Sea [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1985, 3(4): 1-10.

    Google Scholar

    [43] 庞玉茂, 郭兴伟, 韩作振, 等. 南黄海中部隆起晚白垩世以来地层剥蚀的磷灰石裂变径迹分析[J]. 地球科学, 2018, 43(6):1921-1930

    Google Scholar

    PANG Yumao, GUO Xingwei, HAN Zuozhen, et al. Apatite fission track constrains on denudation since late cretaceous in central uplift, South Yellow Sea Basin [J]. Earth Science, 2018, 43(6): 1921-1930.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(2403) PDF downloads(57) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint