2021 Vol. 41, No. 5
Article Contents

WU Nengyou, LI Yanlong, LIU Lele, WAN Yizhao, ZHANG Zhengcai, CHEN Mingtao. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 3-11. doi: 10.16562/j.cnki.0256-1492.2021092201
Citation: WU Nengyou, LI Yanlong, LIU Lele, WAN Yizhao, ZHANG Zhengcai, CHEN Mingtao. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 3-11. doi: 10.16562/j.cnki.0256-1492.2021092201

Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata

More Information
  • Creeping of HBS is a common behavior of hydrate-bearing strata in the process of gas production and has great impact on the occurrence and development of engineering geohazards. In this paper, we summarized the main failure modes of HBS based on the investigation of a large number of literatures. Then the research thoughts and strategies on strata creeping behaviors during hydrate exploitation are comprehensively discussed, based on the key scientific issues expounded. Afterwards, a multi-scale creeping detection and characterization approach for HBS is put forward, together with its future research trends. It is supposed that creeping behaviors of HBS during gas extraction are the result of combination of hydrate distribution and its dissociation-induced changes in multi-physical fields such as phase transformation, heat exchange, seepage, and stress evolution. The current constitutive models for conventional soils are not effective enough to reflect such a complex dynamic multifield, multiphase and multicomponent coupling effect, which are doubtlessly inadaptable for evaluating the geotechnical issues during hydrate exploitation in the case of northern South China Sea. For this reason, a multi-scale detection and characterization system needs to be established to analyze the dynamic damage behaviors of HBS during hydrate production, which consists of the molecular scale, nano-to-micro scale, core scale, pilot scale, and field scales techniques. Using the sediments collected from the HBS at the northern South China Sea, the control mechanisms of different geological and engineering parameters on hydrate-bearing strata creeping should be quantitatively modeled.

  • 加载中
  • [1] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11

    Google Scholar

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11.

    Google Scholar

    [2] Collett T. Gas hydrate production testing – knowledge gained[C]//Offshore Technology Conference. Houston, Texas: Offshore Technology Conference, 2019: 1-16.

    Google Scholar

    [3] Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2014.

    Google Scholar

    [4] Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir [J]. RSC Advances, 2019, 9(45): 25987-26013. doi: 10.1039/C9RA00755E

    CrossRef Google Scholar

    [5] Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003

    CrossRef Google Scholar

    [6] Mao P X, Sun J X, Ning F L, et al. Effect of permeability anisotropy on depressurization-induced gas production from hydrate reservoirs in the South China Sea [J]. Energy Science & Engineering, 2020, 8(8): 2690-2707.

    Google Scholar

    [7] Wu N Y, Li Y L, Chen Q, et al. Sand production management during marine natural gas hydrate exploitation: review and an innovative solution [J]. Energy & Fuels, 2021, 35(6): 4617-4632.

    Google Scholar

    [8] Li Y L, Wu N Y, Ning F L, et al. A sand-production control system for gas production from clayey silt hydrate reservoirs [J]. China Geology, 2019, 2(2): 121-132. doi: 10.31035/cg2018081

    CrossRef Google Scholar

    [9] Jin Y R, Li Y L, Wu N Y, et al. Characterization of sand production for clayey-silt sediments conditioned to openhole gravel-packing: experimental observations [J]. SPE Journal, 2021: 1-18. doi: 10.2118/206708-PA

    CrossRef Google Scholar

    [10] Mu Y H, Ma W, Li G Y, et al. Long-term thermal and settlement characteristics of air convection embankments with and without adjacent surface water ponding in permafrost regions [J]. Engineering Geology, 2020, 266: 105464. doi: 10.1016/j.enggeo.2019.105464

    CrossRef Google Scholar

    [11] Wang R H, Liu W G, Li Y H, et al. Effects of porosity on the creep behavior of hydrate-bearing sediments[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: ASME, 2012.

    Google Scholar

    [12] Liu L L, Zhang Z, Li C F, et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments [J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103109. doi: 10.1016/j.jngse.2019.103109

    CrossRef Google Scholar

    [13] Li Y H, Liu W G, Song Y C, et al. Creep behaviors of methane hydrate coexisting with ice [J]. Journal of Natural Gas Science and Engineering, 2016, 33: 347-354. doi: 10.1016/j.jngse.2016.05.042

    CrossRef Google Scholar

    [14] Yang J, Hassanpouryouzband A, Tohidi B, et al. Gas hydrates in permafrost: distinctive effect of gas hydrates and ice on the geomechanical properties of simulated hydrate-bearing permafrost sediments [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(3): 2551-2563. doi: 10.1029/2018JB016536

    CrossRef Google Scholar

    [15] Pearson C F, Halleck P M, McGuire P L, et al. Natural gas hydrate deposits: a review of in situ properties [J]. The Journal of Physical Chemistry, 1983, 87(21): 4180-4185. doi: 10.1021/j100244a041

    CrossRef Google Scholar

    [16] 张峰瑞, 姜谙男, 杨秀荣, 等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2):509-519

    Google Scholar

    ZHANG Fengrui, JIANG Annan, YANG Xiurong, et al. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.

    Google Scholar

    [17] 陈国庆, 万亿, 裴本灿, 等. 冻融循环作用下砂岩蠕变特性及损伤模型研究[J]. 工程地质学报, 2020, 28(1):19-28

    Google Scholar

    CHEN Guoqing, WAN Yi, PEI Bencan, et al. The creep characteristics and damage model of sandstone under freeze-thaw cycles [J]. Journal of Engineering Geology, 2020, 28(1): 19-28.

    Google Scholar

    [18] Fan Z, Sun C M, Kuang Y M, et al. MRI analysis for methane hydrate dissociation by depressurization and the concomitant ice generation [J]. Energy Procedia, 2017, 105: 4763-4768. doi: 10.1016/j.egypro.2017.03.1038

    CrossRef Google Scholar

    [19] 陈卫忠, 李翻翻, 雷江, 等. 热-水-力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2):379-388 doi: 10.16285/j.rsm.2019.0016

    CrossRef Google Scholar

    CHEN Weizhong, LI Fanfan, LEI Jiang, et al. Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388. doi: 10.16285/j.rsm.2019.0016

    CrossRef Google Scholar

    [20] Sun Y H, Ma X L, Guo W, et al. Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea [J]. Journal of Petroleum Science and Engineering, 2019, 181: 106196. doi: 10.1016/j.petrol.2019.106196

    CrossRef Google Scholar

    [21] Yang M J, Zhao J, Zheng J N, et al. Hydrate reformation characteristics in natural gas hydrate dissociation process: A review [J]. Applied Energy, 2019, 256: 113878. doi: 10.1016/j.apenergy.2019.113878

    CrossRef Google Scholar

    [22] Li Y L, Wu N Y, He C Q, et al. Nucleation probability and memory effect of methane-propane mixed gas hydrate [J]. Fuel, 2021, 291: 120103. doi: 10.1016/j.fuel.2020.120103

    CrossRef Google Scholar

    [23] Zhu Y M, Chen C, Luo T T, et al. Creep behaviours of methane hydrate-bearing sediments [J]. Environmental Geotechnics, 2019: 1-11. doi: 10.1680/jenge.18.00196

    CrossRef Google Scholar

    [24] Bu Q T, Hu G W, Liu C L, et al. Acoustic characteristics and micro-distribution prediction during hydrate dissociation in sediments from the South China Sea [J]. Journal of Natural Gas Science and Engineering, 2019, 65: 135-144. doi: 10.1016/j.jngse.2019.02.010

    CrossRef Google Scholar

    [25] 于超云, 唐世斌, 唐春安. 含水率对红砂岩瞬时和蠕变力学性质影响的试验研究[J]. 煤炭学报, 2019, 44(2):473-481

    Google Scholar

    YU Chaoyun, TANG Shibin, TANG Chun'an. Experimental investigation on the effect of water content on the short-term and creep mechanical behaviors of red sandstone [J]. Journal of China Coal Society, 2019, 44(2): 473-481.

    Google Scholar

    [26] 李彦龙, 刘昌岭, 廖华林, 等. 泥质粉砂沉积物—天然气水合物混合体系的力学特性[J]. 天然气工业, 2020, 40(8):159-168 doi: 10.3787/j.issn.1000-0976.2020.08.013

    CrossRef Google Scholar

    LI Yanlong, LIU Changling, LIAO Hualin, et al. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates [J]. Natural Gas Industry, 2020, 40(8): 159-168. doi: 10.3787/j.issn.1000-0976.2020.08.013

    CrossRef Google Scholar

    [27] 郝永卯, 黎晓舟, 李淑霞, 等. 天然气水合物降压开采半解析两相产能模型[J]. 中国科学:物理学 力学 天文学, 2020, 50(6):064701

    Google Scholar

    HAO Yongmao, LI Xiaozhou, LI Shuxia, et al. The semi-analytical two-phase productivity model of natural gas hydrate by depressurization [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(6): 064701.

    Google Scholar

    [28] 罗飞, 张元泽, 朱占元, 等. 一种青藏高原冻结砂土蠕变本构模型[J]. 哈尔滨工业大学学报, 2020, 52(2):26-32 doi: 10.11918/201810053

    CrossRef Google Scholar

    LUO Fei, ZHANG Yuanze, ZHU Zhanyuan, et al. Creep constitutive model for frozen sand of Qinghai-Tibet Plateau [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 26-32. doi: 10.11918/201810053

    CrossRef Google Scholar

    [29] 李彦龙, 刘昌岭, 刘乐乐, 等. 含甲烷水合物松散沉积物的力学特性[J]. 中国石油大学学报(自然科学版), 2017, 41(3):105-113

    Google Scholar

    LI Yanlong, LIU Changling, LIU Lele, et al. Mechanical properties of methane hydrate-bearing unconsolidated sediments [J]. Journal of China University of Petroleum, 2017, 41(3): 105-113.

    Google Scholar

    [30] Li Y L, Dong L, Wu N Y, et al. Influences of hydrate layered distribution patterns on triaxial shearing characteristics of hydrate-bearing sediments [J]. Engineering Geology, 2021, 294: 106375. doi: 10.1016/j.enggeo.2021.106375

    CrossRef Google Scholar

    [31] Liu Z C, Dai S, Ning F L, et al. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt [J]. Geophysical Research Letters, 2018, 45(2): 715-723. doi: 10.1002/2017GL076374

    CrossRef Google Scholar

    [32] Li Y L, Hu G W, Wu N Y, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea [J]. Acta Oceanologica Sinica, 2019, 38(3): 114-123. doi: 10.1007/s13131-019-1404-8

    CrossRef Google Scholar

    [33] 孔亮, 刘文卓, 袁庆盟, 等. 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9):3319-3326

    Google Scholar

    KONG Liang, LIU Wenzhuo, YUAN Qingmeng, et al. Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.

    Google Scholar

    [34] 韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8):116-132 doi: 10.3787/j.issn.1000-0976.2020.08.009

    CrossRef Google Scholar

    WEI Changfu, YAN Rongtao, TIAN Huihui, et al. Geotechnical problems in exploitation of natural gas hydrate: Status and challenges [J]. Natural Gas Industry, 2020, 40(8): 116-132. doi: 10.3787/j.issn.1000-0976.2020.08.009

    CrossRef Google Scholar

    [35] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016, 37(10):1273-1279 doi: 10.7623/syxb201610007

    CrossRef Google Scholar

    LI Yanlong, LIU Changling, LIU Lele. Damage statistic constitutive model of hydrate-bearing sediments and the determination method of parameters [J]. Acta Petrolei Sinica, 2016, 37(10): 1273-1279. doi: 10.7623/syxb201610007

    CrossRef Google Scholar

    [36] 颜荣涛, 张炳晖, 杨德欢, 等. 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12):4421-4428

    Google Scholar

    YAN Rongtao, ZHANG Binghui, YANG Dehuan, et al. Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions [J]. Rock and Soil Mechanics, 2018, 39(12): 4421-4428.

    Google Scholar

    [37] Chen J, Liu C J, Zhang Z C, et al. Molecular study on the behavior of methane hydrate decomposition induced by ions electrophoresis [J]. Fuel, 2022, 307: 121866. doi: 10.1016/j.fuel.2021.121866

    CrossRef Google Scholar

    [38] Zhang Z C, Kusalik P G, Guo G J, et al. Insight on the stability of polycrystalline natural gas hydrates by molecular dynamics simulations [J]. Fuel, 2021, 289: 119946. doi: 10.1016/j.fuel.2020.119946

    CrossRef Google Scholar

    [39] Cao P Q, Wu J Y, Zhang Z S, et al. Mechanical properties of methane hydrate: intrinsic differences from ice [J]. The Journal of Physical Chemistry C, 2018, 122(51): 29081-29093. doi: 10.1021/acs.jpcc.8b06002

    CrossRef Google Scholar

    [40] Cladek B R, Everett S M, McDonnell M T, et al. Guest-host interactions in mixed CH4-CO2 hydrates: insights from molecular dynamics simulations [J]. Journal of Physical Chemistry C, 2018, 122(34): 19575-19583. doi: 10.1021/acs.jpcc.8b05228

    CrossRef Google Scholar

    [41] Song W L, Sun X L, Zhou G G, et al. Molecular dynamics simulation study of N2/CO2 displacement process of methane hydrate [J]. ChemistrySelect, 2020, 5(44): 1393613950.

    Google Scholar

    [42] Zhang Y C, Liu L L, Wang D G, et al. Application of Low-Field Nuclear Magnetic Resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media [J]. Energy & Fuels, 2021, 35(3): 2174-2182.

    Google Scholar

    [43] 张永超, 刘昌岭, 刘乐乐, 等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3):193-202

    Google Scholar

    ZHANG Yongchao, LIU Changling, LIU Lele, et al. Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation [J]. Marine Geology & Quaternary Geology, 2021, 41(3): 193-202.

    Google Scholar

    [44] 吴能友, 李彦龙, 刘昌岭, 等. 一种基于低场核磁分析水合物沉积物力学特性的装置及方法: 中国, 202010147539.5[P]. 2021-02-26

    Google Scholar

    .WU Nengyou, LI Yanlong, LIU Changling, et al. Dwtection device and method for mechanical properties of hydrate-bearing sediment based on low-field nuclear magnetic resonance: CN, 202010147539.5[P]. 2021-02-26. ]

    Google Scholar

    [45] Seol Y, Lei L, Choi J H, et al. Integration of triaxial testing and pore-scale visualization of methane hydrate bearing sediments [J]. Review of Scientific Instruments, 2019, 90(12): 124504. doi: 10.1063/1.5125445

    CrossRef Google Scholar

    [46] 张诚成, 施斌, 朱鸿鹄, 等. 分布式光纤探测地裂缝的理论基础探讨[J]. 工程地质学报, 2019, 27(6):1473-1482

    Google Scholar

    ZHANG Chengcheng, SHI Bin, ZHU Honghu, et al. A theoretical framework for detecting and monitoring ground fissures using distributed fiber optic sensing [J]. Journal of Engineering Geology, 2019, 27(6): 1473-1482.

    Google Scholar

    [47] Zhang C C, Zhu H H, Liu S P, et al. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements [J]. Engineering Geology, 2018, 234: 83-96. doi: 10.1016/j.enggeo.2018.01.002

    CrossRef Google Scholar

    [48] 万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4):117-128 doi: 10.3787/j.issn.1000-0976.2018.04.014

    CrossRef Google Scholar

    WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea [J]. Natural Gas Industry, 2018, 38(4): 117-128. doi: 10.3787/j.issn.1000-0976.2018.04.014

    CrossRef Google Scholar

    [49] Jin G R, Lei H W, Xu T F, et al. Simulated geomechanical responses to marine methane hydrate recovery using horizontal wells in the Shenhu area, South China Sea [J]. Marine and Petroleum Geology, 2018, 92: 424-436. doi: 10.1016/j.marpetgeo.2017.11.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(2125) PDF downloads(73) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint