2022 Vol. 42, No. 2
Article Contents

LI Xiang, YE Jun, LIU Xijun, SHI Xuefa, LI Chuanshun, YAN Shijuan. Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 46-58. doi: 10.16562/j.cnki.0256-1492.2021062301
Citation: LI Xiang, YE Jun, LIU Xijun, SHI Xuefa, LI Chuanshun, YAN Shijuan. Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 46-58. doi: 10.16562/j.cnki.0256-1492.2021062301

Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge

More Information
  • The Chihu hydrothermal field is a mineral occurrence related to a detachment fault structure. It was discovered in 2019 at 23.7°S of the southern mid-Atlantic ridge. The detachment fault is believed having important influences on the hydrothermal activity and mineral deposition of the field. In this paper, mineralogy and mineralogy chemistry studies are conducted for the hydrothermal products by means of transmission-reflection microscope, Terraspec Halo mineral discriminator and X-ray diffraction (XRD). The results suggest that the hydrothermal products are mainly composed of siliceous sulfides, siliceous mineralized and carbonate mineralized breccias consisting of altered rock fragments, massive sulfide breccia, fine-grained disseminated sulfide, and siliceous and carbonate cemented matrix. The difference in mineral composition, structure and mineral composition between massive sulfide and fine-grained disseminated sulfide indicates that the hydrothermal area may have experienced multiple times of eruption cycles. The complexity and diversity of altered rock fragments suggest that in addition to basic source rocks, this hydrothermal field may also be affected by ultrabasic source rocks.

  • 加载中
  • [1] Corliss J B, Lyle M, Dymond J, et al. The chemistry of hydrothermal mounds near the Galapagos Rift [J]. Earth and Planetary Science Letters, 1978, 40(1): 12-24. doi: 10.1016/0012-821X(78)90070-5

    CrossRef Google Scholar

    [2] Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005.

    Google Scholar

    [3] Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1

    CrossRef Google Scholar

    [4] Cherkashev G A, Ivanov V N, Bel’tenev V I, et al. Massive sulfide ores of the northern equatorial mid-atlantic ridge [J]. Oceanology, 2013, 53(5): 607-619. doi: 10.1134/S0001437013050032

    CrossRef Google Scholar

    [5] Augustin N, Lackschewitz K S, Kuhn T, et al. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N) [J]. Marine Geology, 2008, 256(1-4): 18-29. doi: 10.1016/j.margeo.2008.09.004

    CrossRef Google Scholar

    [6] 石学法, 李兵, 叶俊, 等. 南大西洋中脊热液活动及形成机制[J]. 矿物学报, 2015, 35(S1):782-783

    Google Scholar

    SHI Xuefa, LI Bing, YE Jun, et al. The hydrothermal activity and formation mechanism of the South Mid-Atlantic Ridge [J]. Acta Mieralogica Sinica, 2015, 35(S1): 782-783.

    Google Scholar

    [7] 杨耀民, 石学法. 南大西洋脊多金属硫化物热液区的预测与发现[J]. 矿物学报, 2011, 31(S1):708-709

    Google Scholar

    YANG Yaomin, SHI Xuefa. Prediction and discovery of polymetallic sulfide hydrothermal area in South Atlantic Ridge [J]. Acta Mieralogica Sinica, 2011, 31(S1): 708-709.

    Google Scholar

    [8] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011

    Google Scholar

    ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.

    Google Scholar

    [9] Humphris S E, Tivey M K, Tivey M A. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 121: 8-16. doi: 10.1016/j.dsr2.2015.02.015

    CrossRef Google Scholar

    [10] Mccaig A M, Delacour A, Fallick A E, et al. Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the tag hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington D. C. : American Geophysical Union, 2010: 207-239.

    Google Scholar

    [11] Escartín J, Mével C, Petersen S, et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1451-1482. doi: 10.1002/2016GC006775

    CrossRef Google Scholar

    [12] 中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录-2017[M]. 北京: 海洋出版社, 2018

    Google Scholar

    Office of China Ocean Mineral Resources Research and Development Association. Chinese Gazetteer of Undersea Features on the International Seabed-2017[M]. Beijing: Ocean Press, 2018.

    Google Scholar

    [13] Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data [J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B7): 12527-12555. doi: 10.1029/95JB00610

    CrossRef Google Scholar

    [14] 彭晓彤, 周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科学:地球科学, 2005, 48(11):1891-1899 doi: 10.1360/04yd0029

    CrossRef Google Scholar

    PENG Xiaotong, ZHOU Huaiyang. Growth history of hydrothermal chimneys at EPR 9-10°N: A structural and mineralogical study [J]. Science in China Series D:Earth Sciences, 2005, 48(11): 1891-1899. doi: 10.1360/04yd0029

    CrossRef Google Scholar

    [15] Scott S D. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments [J]. Mineralogical Magazine, 1983, 47(345): 427-435. doi: 10.1180/minmag.1983.047.345.03

    CrossRef Google Scholar

    [16] Barton P B Jr, Bethke P M. Chalcopyrite disease in sphalerite: Pathology and epidemiology [J]. American Mineralogist, 1987, 72(5-6): 451-467.

    Google Scholar

    [17] Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents [J]. Geology, 2014, 42(8): 699-702. doi: 10.1130/G35655.1

    CrossRef Google Scholar

    [18] Stroncik N A, Schmincke H U. Palagonite - a review [J]. International Journal of Earth Sciences, 2002, 91(4): 680-697. doi: 10.1007/s00531-001-0238-7

    CrossRef Google Scholar

    [19] Mozgova N N, Borodaev Y S, Gablina I F, et al. Mineral assemblages as indicators of the maturity of oceanic hydrothermal sulfide mounds [J]. Lithology and Mineral Resources, 2005, 40(4): 293-319. doi: 10.1007/s10987-005-0030-z

    CrossRef Google Scholar

    [20] Seyfried W E Jr, Ding K. Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges[M]//Humphris W E Jr, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington D. C. : Geophysical Monograph Series, 1995: 248-272.

    Google Scholar

    [21] Knott R, Fouquet Y, Honnorez J, et al. Petrology of hydrothermal mineralization: a vertical section through the TAG mound[M]//Herzig P M, Humphris S E, Miller D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, vol. 158. College Station, Tex. : The Program, 1998.

    Google Scholar

    [22] Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic ridge [J]. Mineralium Deposita, 2006, 41(1): 52-67. doi: 10.1007/s00126-005-0040-8

    CrossRef Google Scholar

    [23] Alt J C, Honnorez J, Laverne C, et al. Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions [J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B10): 10309-10335. doi: 10.1029/JB091iB10p10309

    CrossRef Google Scholar

    [24] Fouquet Y, Cambon P, Charlou J L, et al. Geodiversity of hydrothermal processes along the Mid-Atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington D. C. : American Geophysical Union, 2010: 321-367.

    Google Scholar

    [25] 陈曼云, 金巍, 郑常青, . 变质岩鉴定手册[M]. 北京: 地质出版社, 2009

    Google Scholar

    CHEN Manyun, JIN Wei, ZHENG Changqing. Metamorphic Rock Identification Manual[M]. Beijing: Geological Press, 2009.

    Google Scholar

    [26] 李文渊. 现代海底热液成矿作用[J]. 地球科学与环境学报, 2010, 32(1):15-23

    Google Scholar

    LI Wenyuan. Hydrothermal mineralization on the modern seafloor [J]. Journal of Earth Sciences and Environment, 2010, 32(1): 15-23.

    Google Scholar

    [27] Stolz J, Large R R. Evaluation of the source-rock control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania [J]. Economic Geology, 1992, 87(3): 720-738. doi: 10.2113/gsecongeo.87.3.720

    CrossRef Google Scholar

    [28] Lowell R P. Hydrothermal circulation at slow spreading ridges: analysis of heat sources and heat transfer processes[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, Volume 188. Washington, D. C. : American Geophysical Union, 2010: 11-26.

    Google Scholar

    [29] Pertsev A N, Bortnikov N S, Vlasov E A, et al. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic ridge, 13 31’N: associated rocks of the oceanic core complex and their hydrothermal alteration [J]. Geology of Ore Deposits, 2012, 54(5): 334-346. doi: 10.1134/S1075701512050030

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(2587) PDF downloads(51) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint