Citation: | LI Xiang, YE Jun, LIU Xijun, SHI Xuefa, LI Chuanshun, YAN Shijuan. Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 46-58. doi: 10.16562/j.cnki.0256-1492.2021062301 |
The Chihu hydrothermal field is a mineral occurrence related to a detachment fault structure. It was discovered in 2019 at 23.7°S of the southern mid-Atlantic ridge. The detachment fault is believed having important influences on the hydrothermal activity and mineral deposition of the field. In this paper, mineralogy and mineralogy chemistry studies are conducted for the hydrothermal products by means of transmission-reflection microscope, Terraspec Halo mineral discriminator and X-ray diffraction (XRD). The results suggest that the hydrothermal products are mainly composed of siliceous sulfides, siliceous mineralized and carbonate mineralized breccias consisting of altered rock fragments, massive sulfide breccia, fine-grained disseminated sulfide, and siliceous and carbonate cemented matrix. The difference in mineral composition, structure and mineral composition between massive sulfide and fine-grained disseminated sulfide indicates that the hydrothermal area may have experienced multiple times of eruption cycles. The complexity and diversity of altered rock fragments suggest that in addition to basic source rocks, this hydrothermal field may also be affected by ultrabasic source rocks.
[1] | Corliss J B, Lyle M, Dymond J, et al. The chemistry of hydrothermal mounds near the Galapagos Rift [J]. Earth and Planetary Science Letters, 1978, 40(1): 12-24. doi: 10.1016/0012-821X(78)90070-5 |
[2] | Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005. |
[3] | Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1 |
[4] | Cherkashev G A, Ivanov V N, Bel’tenev V I, et al. Massive sulfide ores of the northern equatorial mid-atlantic ridge [J]. Oceanology, 2013, 53(5): 607-619. doi: 10.1134/S0001437013050032 |
[5] | Augustin N, Lackschewitz K S, Kuhn T, et al. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N) [J]. Marine Geology, 2008, 256(1-4): 18-29. doi: 10.1016/j.margeo.2008.09.004 |
[6] | 石学法, 李兵, 叶俊, 等. 南大西洋中脊热液活动及形成机制[J]. 矿物学报, 2015, 35(S1):782-783 SHI Xuefa, LI Bing, YE Jun, et al. The hydrothermal activity and formation mechanism of the South Mid-Atlantic Ridge [J]. Acta Mieralogica Sinica, 2015, 35(S1): 782-783. |
[7] | 杨耀民, 石学法. 南大西洋脊多金属硫化物热液区的预测与发现[J]. 矿物学报, 2011, 31(S1):708-709 YANG Yaomin, SHI Xuefa. Prediction and discovery of polymetallic sulfide hydrothermal area in South Atlantic Ridge [J]. Acta Mieralogica Sinica, 2011, 31(S1): 708-709. |
[8] | 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011 ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011. |
[9] | Humphris S E, Tivey M K, Tivey M A. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 121: 8-16. doi: 10.1016/j.dsr2.2015.02.015 |
[10] | Mccaig A M, Delacour A, Fallick A E, et al. Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the tag hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington D. C. : American Geophysical Union, 2010: 207-239. |
[11] | Escartín J, Mével C, Petersen S, et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1451-1482. doi: 10.1002/2016GC006775 |
[12] | 中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录-2017[M]. 北京: 海洋出版社, 2018 Office of China Ocean Mineral Resources Research and Development Association. Chinese Gazetteer of Undersea Features on the International Seabed-2017[M]. Beijing: Ocean Press, 2018. |
[13] | Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data [J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B7): 12527-12555. doi: 10.1029/95JB00610 |
[14] | 彭晓彤, 周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科学:地球科学, 2005, 48(11):1891-1899 doi: 10.1360/04yd0029 PENG Xiaotong, ZHOU Huaiyang. Growth history of hydrothermal chimneys at EPR 9-10°N: A structural and mineralogical study [J]. Science in China Series D:Earth Sciences, 2005, 48(11): 1891-1899. doi: 10.1360/04yd0029 |
[15] | Scott S D. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments [J]. Mineralogical Magazine, 1983, 47(345): 427-435. doi: 10.1180/minmag.1983.047.345.03 |
[16] | Barton P B Jr, Bethke P M. Chalcopyrite disease in sphalerite: Pathology and epidemiology [J]. American Mineralogist, 1987, 72(5-6): 451-467. |
[17] | Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents [J]. Geology, 2014, 42(8): 699-702. doi: 10.1130/G35655.1 |
[18] | Stroncik N A, Schmincke H U. Palagonite - a review [J]. International Journal of Earth Sciences, 2002, 91(4): 680-697. doi: 10.1007/s00531-001-0238-7 |
[19] | Mozgova N N, Borodaev Y S, Gablina I F, et al. Mineral assemblages as indicators of the maturity of oceanic hydrothermal sulfide mounds [J]. Lithology and Mineral Resources, 2005, 40(4): 293-319. doi: 10.1007/s10987-005-0030-z |
[20] | Seyfried W E Jr, Ding K. Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges[M]//Humphris W E Jr, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington D. C. : Geophysical Monograph Series, 1995: 248-272. |
[21] | Knott R, Fouquet Y, Honnorez J, et al. Petrology of hydrothermal mineralization: a vertical section through the TAG mound[M]//Herzig P M, Humphris S E, Miller D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, vol. 158. College Station, Tex. : The Program, 1998. |
[22] | Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic ridge [J]. Mineralium Deposita, 2006, 41(1): 52-67. doi: 10.1007/s00126-005-0040-8 |
[23] | Alt J C, Honnorez J, Laverne C, et al. Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions [J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B10): 10309-10335. doi: 10.1029/JB091iB10p10309 |
[24] | Fouquet Y, Cambon P, Charlou J L, et al. Geodiversity of hydrothermal processes along the Mid-Atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington D. C. : American Geophysical Union, 2010: 321-367. |
[25] | 陈曼云, 金巍, 郑常青, . 变质岩鉴定手册[M]. 北京: 地质出版社, 2009 CHEN Manyun, JIN Wei, ZHENG Changqing. Metamorphic Rock Identification Manual[M]. Beijing: Geological Press, 2009. |
[26] | 李文渊. 现代海底热液成矿作用[J]. 地球科学与环境学报, 2010, 32(1):15-23 LI Wenyuan. Hydrothermal mineralization on the modern seafloor [J]. Journal of Earth Sciences and Environment, 2010, 32(1): 15-23. |
[27] | Stolz J, Large R R. Evaluation of the source-rock control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania [J]. Economic Geology, 1992, 87(3): 720-738. doi: 10.2113/gsecongeo.87.3.720 |
[28] | Lowell R P. Hydrothermal circulation at slow spreading ridges: analysis of heat sources and heat transfer processes[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, Volume 188. Washington, D. C. : American Geophysical Union, 2010: 11-26. |
[29] | Pertsev A N, Bortnikov N S, Vlasov E A, et al. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic ridge, 13 31’N: associated rocks of the oceanic core complex and their hydrothermal alteration [J]. Geology of Ore Deposits, 2012, 54(5): 334-346. doi: 10.1134/S1075701512050030 |
Location map of the Chihu hydrothermal field
Typical sulfide images from ChiHu hydrothermal field
Mineralogical characteristics of siliceous sulfides
Cu-Fe variation of chalcopyrite in siliceous sulfide
Mineral characteristics of altered debris in mineralized breccia
Mineralogical characteristics of metallic sulfides in mineralized breccia
Fe-Cu variation of pyrite in siliceous mineralized breccia
X-ray (XRD) diffraction pattern of mineralized breccia