2022 Vol. 42, No. 2
Article Contents

CHEN Yun, DAI Zhijun, HU Gaojian, MEI Xuefei, GU Jinghua. Surface sediment distribution pattern of the Xinqiao Channel of Changjiang Estuary and its controlling factors[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 59-69. doi: 10.16562/j.cnki.0256-1492.2021061503
Citation: CHEN Yun, DAI Zhijun, HU Gaojian, MEI Xuefei, GU Jinghua. Surface sediment distribution pattern of the Xinqiao Channel of Changjiang Estuary and its controlling factors[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 59-69. doi: 10.16562/j.cnki.0256-1492.2021061503

Surface sediment distribution pattern of the Xinqiao Channel of Changjiang Estuary and its controlling factors

More Information
  • Flood-dominated channel is an important geomorphic unit in estuaries. Its dynamic sedimentation process is directly related to the dynamics of erosion-deposition system of the channel. However, due to the runoff-tide interaction and intensive human activities, the dynamics of sedimentation process for most of estuarine flood channels in the world is rapidly changing, led to channel shrinkage. Based on the grain-size parameters of the surface sediments collected along the Xinqiao Channel, the largest flooding channel in the South Branch of Changjiang Estuary, the distribution pattern of the surface sediments in the Xinqiao Channel and its influencing factors are carefully studied in this paper with the method of empirical orthogonal function (EOF). The Xinqiao Channel can be divided into three depositional zones. The upstream of the channel is mainly composed of silty sand and clayey silty sand which are poor in sorting and the middle of the channel is characterized by well sorted sands, while in the downstream of the channel, the sediments are mainly composed of sand, silty sand, sandy silt and clayey silty sand, which are poorly sorted. From the viewpoint of sedimentary dynamics, the surface sediments in the Xinqiao Channel can be classified into three modes. The major mode is dominated by sandy silt and clayey silt prevailed in the upstream and part of the downstream, deposited under the control of the joint action of runoff and tide. The secondary mode is dominated by silty sand in the middle and part of the downstream, under the control of local fluvial regime. The third mode, characterized by sandy deposits, is formed by runoff in flooding seasons. In addition, the downward movement of the tail of Biandan Shoal has enhanced the runoff entering the Xinqiao Channel, that results in the coarsening of surface sediment. The construction of the Dongfengxisha Reservoir caused to the fining up of surface sediment at the tip of upper Xinqiao Channel.

  • 加载中
  • [1] Barua D K. Suspended sediment movement in the estuary of the Ganges-Brahmaputra-Meghna river system [J]. Marine Geology, 1990, 91(3): 243-253. doi: 10.1016/0025-3227(90)90039-M

    CrossRef Google Scholar

    [2] Mitchell S B, Uncles R J. Estuarine sediments in macrotidal estuaries: future research requirements and management challenges [J]. Ocean & Coastal Management, 2013, 79: 97-100.

    Google Scholar

    [3] Green M O, Bell R G, Dolphin T J, et al. Silt and sand transport in a deep tidal channel of a large estuary (Manukau Harbour, New Zealand) [J]. Marine Geology, 2000, 163(1-4): 217-240. doi: 10.1016/S0025-3227(99)00102-4

    CrossRef Google Scholar

    [4] Gong W P, Jia L W, Shen J, et al. Sediment transport in response to changes in river discharge and tidal mixing in a funnel-shaped micro-tidal estuary [J]. Continental Shelf Research, 2014, 76: 89-107. doi: 10.1016/j.csr.2014.01.006

    CrossRef Google Scholar

    [5] 张云峰, 张振克, 刘玉卿, 等. 长江口北支沉积动力变化及对人类活动的响应[J]. 人民长江, 2019, 50(9):24-29

    Google Scholar

    ZHANG Yunfeng, ZHANG Zhenke, LIU Yuqing, et al. Sediment dynamic processes in North Branch of Yangtze River Estuary and response to human activities [J]. Yangtze River, 2019, 50(9): 24-29.

    Google Scholar

    [6] 时翠, 甘华阳, 夏真, 等. 珠江口内伶仃洋表层沉积物粒度特征及其运移趋势[J]. 海洋地质与第四纪地质, 2015, 35(1):13-20

    Google Scholar

    SHI Cui, GAN Huayang, XIA Zhen, et al. Characteristics and transport trend of surface sediments in inner Lingdingyang firth of the Pearl River Estuary [J]. Marine Geology & Quaternary Geology, 2015, 35(1): 13-20.

    Google Scholar

    [7] Cheng Z X, Wang X H, Jalón-Rojas I, et al. Reconstruction of sedimentation changes under anthropogenic influence in a medium-scale estuary based on a decadal chronological framework [J]. Estuarine, Coastal and Shelf Science, 2019, 227: 106295. doi: 10.1016/j.ecss.2019.106295

    CrossRef Google Scholar

    [8] Kim T I, Choi B H, Lee S W. Hydrodynamics and sedimentation induced by large-scale coastal developments in the Keum River Estuary, Korea [J]. Estuarine, Coastal and Shelf Science, 2006, 68(3-4): 515-528. doi: 10.1016/j.ecss.2006.03.003

    CrossRef Google Scholar

    [9] Dai Z J, Fagherazzi S, Mei X F, et al. Linking the infilling of the North Branch in the Changjiang (Yangtze) Estuary to anthropogenic activities from 1958 to 2013 [J]. Marine Geology, 2016, 379: 1-12. doi: 10.1016/j.margeo.2016.05.006

    CrossRef Google Scholar

    [10] Lesourd S, Lesueur P, Fisson C, et al. Sediment evolution in the mouth of the Seine Estuary (France): a long-term monitoring during the last 150 years [J]. Comptes Rendus Geoscience, 2016, 348(6): 442-450. doi: 10.1016/j.crte.2015.08.001

    CrossRef Google Scholar

    [11] 王永红, 沈焕庭, 李九发, 等. 长江河口涨落潮槽沉积物特征及其动力响应[J]. 沉积学报, 2009, 27(3):511-517

    Google Scholar

    WANG Yonghong, SHEN Huanting, LI Jiufa, et al. Sedimentary features of sediment and their responses to dynamics in the flood and ebb channel of the Changjiang Estuary [J]. Acta Sedimentologica Sinica, 2009, 27(3): 511-517.

    Google Scholar

    [12] 闵凤阳, 汪亚平, 高建华, 等. 长江口北支的沉积物输运趋势[J]. 海洋通报, 2010, 29(3):264-270 doi: 10.3969/j.issn.1001-6392.2010.03.005

    CrossRef Google Scholar

    MIN Fengyang, WANG Yaping, GAO Jianhua, et al. Sediment transport pathway within the North Branch, Changjiang Estuary [J]. Marine Science Bulletin, 2010, 29(3): 264-270. doi: 10.3969/j.issn.1001-6392.2010.03.005

    CrossRef Google Scholar

    [13] 刘高峰, 沈焕庭, 王永红, 等. 长江口涨、落潮槽底沙输移趋势探讨[J]. 海洋通报, 2003, 22(4):1-7 doi: 10.3969/j.issn.1001-6392.2003.04.001

    CrossRef Google Scholar

    LIU Gaofeng, SHEN Huanting, WANG Yonghong, et al. Bottom sediment transport in the flood and ebb channels of the Changjiang Estuary [J]. Marine Science Bulletin, 2003, 22(4): 1-7. doi: 10.3969/j.issn.1001-6392.2003.04.001

    CrossRef Google Scholar

    [14] Zhang W, Zheng J H, Ji X M, et al. Surficial sediment distribution and the associated net sediment transport pattern retain->in the Pearl River Estuary, South China [J]. Continental Shelf Research, 2013, 61-62: 41-51. doi: 10.1016/j.csr.2013.04.011

    CrossRef Google Scholar

    [15] 刘高峰, 朱建荣, 沈焕庭, 等. 河口涨落潮槽水沙输运机制研究[J]. 泥沙研究, 2005(5):51-57 doi: 10.3321/j.issn:0468-155X.2005.05.009

    CrossRef Google Scholar

    LIU Gaofeng, ZHU Jianrong, SHEN Huanting, et al. Study on mechanism of water and suspended sediment transport in flood and ebb channels [J]. Journal of Sediment Research, 2005(5): 51-57. doi: 10.3321/j.issn:0468-155X.2005.05.009

    CrossRef Google Scholar

    [16] 李九发, 沈焕庭, 万新宁, 等. 长江河口涨潮槽泥沙运动规律[J]. 泥沙研究, 2004(5):34-40 doi: 10.3321/j.issn:0468-155X.2004.05.006

    CrossRef Google Scholar

    LI Jiufa, SHEN Huanting, WAN Xinning, et al. Sediment transport in flood channels of the Changjiang Estuary [J]. Journal of Sediment Research, 2004(5): 34-40. doi: 10.3321/j.issn:0468-155X.2004.05.006

    CrossRef Google Scholar

    [17] 刘苍字, 贾海林, 陈祥锋. 闽江河口沉积结构与沉积作用[J]. 海洋与湖沼, 2001, 32(2):177-184 doi: 10.3321/j.issn:0029-814X.2001.02.009

    CrossRef Google Scholar

    LIU Cangzi, JIA Hailin, CHEN Xiangfeng. Sedimentary texture and sedimentation in the Minjiang River Estuary [J]. Oceanologia et Limnologia Sinica, 2001, 32(2): 177-184. doi: 10.3321/j.issn:0029-814X.2001.02.009

    CrossRef Google Scholar

    [18] 冉隆江. 鸭绿江河口沉积物粒度分布特征及其对流域变化的响应[D]. 南京: 南京大学, 2012

    Google Scholar

    RAN Longjiang. The gran size distribution characteristics of Yalu Estuary and its response to the change of the catchment[D]. Nanjing: Nanjing University, 2012.

    Google Scholar

    [19] Cheng Z X, Jalon-Rójas I, Wang X H, et al. Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary [J]. Estuarine, Coastal and Shelf Science, 2020, 242: 106861. doi: 10.1016/j.ecss.2020.106861

    CrossRef Google Scholar

    [20] 游博文, 张国安, 李一鸣, 等. 近30年来长江口北支及口外沉积特征及输移趋势[J]. 长江流域资源与环境, 2018, 27(10):2328-2338

    Google Scholar

    YOU Bowen, ZHANG Guoan, LI Yiming, et al. Sediment characteristics and transport trend in north branch and offshore area of Yangtze Estuary in the last 30 years [J]. Resources and Environment in the Yangtze Basin, 2018, 27(10): 2328-2338.

    Google Scholar

    [21] Lou Y Y, Dai Z J, He Y Y, et al. Morphodynamic couplings between the Biandan Shoal and Xinqiao Channel, Changjiang (Yangtze) Estuary [J]. Ocean & Coastal Management, 2020, 183: 105036.

    Google Scholar

    [22] Dai Z J, Mei X F, Darby S E, et al. Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system [J]. Journal of Hydrology, 2018, 566: 719-734. doi: 10.1016/j.jhydrol.2018.09.019

    CrossRef Google Scholar

    [23] Lane E W. Report of the subcommittee on sediment terminology [J]. Eos, Transactions American Geophysical Union, 1947, 28(6): 936-938. doi: 10.1029/TR028i006p00936

    CrossRef Google Scholar

    [24] 马菲, 汪亚平, 李炎, 等. 地统计法支持的北部湾东部海域沉积物粒径趋势分析[J]. 地理学报, 2008, 63(11):1207-1217 doi: 10.3321/j.issn:0375-5444.2008.11.010

    CrossRef Google Scholar

    MA Fei, WANG Yaping, LI Yan, et al. The application of geostatistics to analysis of grain size trend in the Eastern Beibu Gulf [J]. Acta Geographica Sinica, 2008, 63(11): 1207-1217. doi: 10.3321/j.issn:0375-5444.2008.11.010

    CrossRef Google Scholar

    [25] McManus J. Grain size determination and interpretation[M]//Tucker M E. Techniques in Sedimentology. Oxford: Blackwell Scientific Publications, 1988: 63-85.

    Google Scholar

    [26] Shepard F P. Nomenclature based on sand-silt-clay ratios [J]. Journal of sedimentary Research (SEPM), 1954, 24(3): 151-158.

    Google Scholar

    [27] Lorenz E N. Empirical orthogonal functions and statistical weather prediction[R]. Bedford, MA: Massachusetts Institute of Technology, 1956: 49-50.

    Google Scholar

    [28] 夏非, 张永战, 吴蔚. EOF分析在海岸地貌与沉积学研究中的应用进展[J]. 地理科学进展, 2009, 28(2):174-186 doi: 10.11820/dlkxjz.2009.02.003

    CrossRef Google Scholar

    XIA Fei, ZHANG Yongzhan, WU Wei. Progress in applications of the EOF analysis in the research of coastal geomorphology and sedimentology [J]. Progress in Geography, 2009, 28(2): 174-186. doi: 10.11820/dlkxjz.2009.02.003

    CrossRef Google Scholar

    [29] 林益帆, 戴志军, 谢华亮, 等. 长江河口近底层悬沙和沉积物的交换过程研究[J]. 海洋学报, 2014, 36(7):99-110

    Google Scholar

    LIN Yifan, DAI Zhijun, XIE Hualiang, et al. The research of exchange processes between the suspended sediment near the bottom and the depositions in the Changjiang (Yangtze) Estuary [J]. Acta Oceanologica Sinica, 2014, 36(7): 99-110.

    Google Scholar

    [30] 王永红. 长江河口涨潮槽的形成机理与动力沉积特征[D]. 上海: 华东师范大学, 2003

    Google Scholar

    WANG Yonghong. Reformation mechanism and features of dynamic sediment in flood channels of the Changjiang Estuary[D]. Shanghai: East China Normal University, 2003.

    Google Scholar

    [31] 沈焕庭, 潘定安. 长江河口潮流特性及其对河槽演变的影响[J]. 华东师范大学学报:自然科学版, 1979(1):131-144

    Google Scholar

    SHEN Huanting, PAN Dingan. The tidal wave propagation and its effect on the channel evolution in the Changjiang Estuary [J]. Journal of East China Normal University:Natural Science, 1979(1): 131-144.

    Google Scholar

    [32] Dronkers J. Tidal asymmetry and estuarine morphology [J]. Netherlands Journal of Sea Research, 1986, 20(2-3): 117-131. doi: 10.1016/0077-7579(86)90036-0

    CrossRef Google Scholar

    [33] Zhou Z, Coco G, Townend I, et al. On the stability relationships between tidal asymmetry and morphologies of tidal basins and estuaries [J]. Earth Surface Processes and Landforms, 2018, 43(9): 1943-1959. doi: 10.1002/esp.4366

    CrossRef Google Scholar

    [34] Matte P, Jay D A, Zaron E D. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides [J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 569-589. doi: 10.1175/JTECH-D-12-00016.1

    CrossRef Google Scholar

    [35] 谢华亮, 戴志军, 吴莹, 等. 海南岛南渡江河口动力沉积模式[J]. 沉积学报, 2014, 32(5):884-892

    Google Scholar

    XIE Hualiang, DAI Zhijun, WU Ying, et al. Sedimentation dynamic modes of the Nandujiang Estuary, Hainan island [J]. Acta Sedimentologica Sinica, 2014, 32(5): 884-892.

    Google Scholar

    [36] 陈沈良, 严肃庄, 李玉中. 长江口及其邻近海域表层沉积物分布特征[J]. 长江流域资源与环境, 2009, 18(2):152-156 doi: 10.3969/j.issn.1004-8227.2009.02.010

    CrossRef Google Scholar

    CHEN Shenliang, YAN Suzhuang, LI Yuzhong. Characteristics of surface sediment distribution in the Yangtze Estuary and its adjacent waters [J]. Resources and Environment in the Yangtze Basin, 2009, 18(2): 152-156. doi: 10.3969/j.issn.1004-8227.2009.02.010

    CrossRef Google Scholar

    [37] 赵建春, 戴志军, 李九发, 等. 强潮海湾近岸表层沉积物时空分布特征及水动力响应: 以杭州湾北岸为例[J]. 沉积学报, 2008, 26(6):1043-1051

    Google Scholar

    ZHAO Jianchun, DAI Zhijun, LI Jiufa, et al. Study on the characteristics of temporal and spatial changes in properties of surface sediment on near-shore seabed of strong-tide bay: a case from the north bank of Hangzhou Bay in Shanghai [J]. Acta Sedimentologica Sinica, 2008, 26(6): 1043-1051.

    Google Scholar

    [38] 黎树式, 戴志军, 葛振鹏, 等. 强潮海滩响应威马逊台风作用动力沉积过程研究: 以北海银滩为例[J]. 海洋工程, 2017, 35(3):89-98

    Google Scholar

    LI Shushi, DAI Zhijun, GE Zhepeng, et al. Sediment dynamic processes of macro tidal beach in response to Typhoon Rammasun action: a case study of Yintan, Beihai [J]. The Ocean Engineering, 2017, 35(3): 89-98.

    Google Scholar

    [39] 沈焕庭, 李九发, 金元欢. 河口涨潮槽的演变及治理[J]. 海洋与湖沼, 1995, 26(1):83-89 doi: 10.3321/j.issn:0029-814X.1995.01.014

    CrossRef Google Scholar

    SHEN Huanting, LI Jiufa, JIN Yuanhuan. Evolution and regulation of flood channels in estuaries [J]. Oceanologia et Limnologia Sinica, 1995, 26(1): 83-89. doi: 10.3321/j.issn:0029-814X.1995.01.014

    CrossRef Google Scholar

    [40] Zhang K D, Li A C, Huang P, et al. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf [J]. Sedimentary geology, 2019, 384: 50-59. doi: 10.1016/j.sedgeo.2019.03.006

    CrossRef Google Scholar

    [41] Li J C, Yao Q, Wang Y, et al. Grain-size characteristics of surface sediments of nebkhas at the southern margin of the Mu Us dune field, China [J]. Catena, 2019, 183: 104210. doi: 10.1016/j.catena.2019.104210

    CrossRef Google Scholar

    [42] Khiari N, Atoui A, Khalil N, et al. Dynamics of sediments along with their core properties in the Monastir-Bekalta coastline (Tunisia, Central Mediterranean) [J]. Journal of African Earth Sciences, 2017, 134: 320-331. doi: 10.1016/j.jafrearsci.2017.06.028

    CrossRef Google Scholar

    [43] Chu A, Wang Z B, De Vriend H J. Analysis on residual coarse sediment transport in estuaries [J]. Estuarine, Coastal and Shelf Science, 2015, 163: 194-205. doi: 10.1016/j.ecss.2015.06.003

    CrossRef Google Scholar

    [44] Brown J M, Davies A G. Flood/ebb tidal asymmetry in a shallow sandy estuary and the impact on net sand transport [J]. Geomorphology, 2010, 114(3): 431-439. doi: 10.1016/j.geomorph.2009.08.006

    CrossRef Google Scholar

    [45] Mei X F, Dai Z J, Wei W, et al. Secular bathymetric variations of the North Channel in the Changjiang (Yangtze) Estuary, China, 1880–2013: causes and effects [J]. Geomorphology, 2018, 303: 30-40. doi: 10.1016/j.geomorph.2017.11.014

    CrossRef Google Scholar

    [46] 姚弘毅. 近期长江口典型河道悬沙输运及其与底沙交换过程[D]. 上海: 华东师范大学, 2018

    Google Scholar

    YAO Hongyi. Recent exchange between suspended sediment and bedload and sediment transport in typical branches of Yangtze Estuary[D]. Shanghai: East China Normal University, 2018.

    Google Scholar

    [47] 高敏, 李九发, 李占海, 等. 近期长江口南支河道洪季含沙量时间变化及床沙再悬浮研究[J]. 长江流域资源与环境, 2015, 24(1):30-38 doi: 10.11870/cjlyzyyhj201501005

    CrossRef Google Scholar

    GAO Min, LI Jiufa, LI Zhanhai, et al. Characteristics of temporal change of suspended sediment and bed load resuspension during flood season in the south branch of Changjiang Estuary [J]. Resources and Environment in the Yangtze Basin, 2015, 24(1): 30-38. doi: 10.11870/cjlyzyyhj201501005

    CrossRef Google Scholar

    [48] 何钰滢, 戴志军, 楼亚颖, 等. 长江口扁担沙动力地貌变化过程研究[J]. 海洋学报, 2020, 42(5):104-116

    Google Scholar

    HE Yuying, DAI Zhijun, LOU Yaying, et al. Morphodynamic evolution of the Biandan Shoal in the Changjiang River Estuary [J]. Haiyang Xuebao, 2020, 42(5): 104-116.

    Google Scholar

    [49] Mariotti G, Fagherazzi S. Channels-tidal flat sediment exchange: the channel spillover mechanism[J]. Journal of Geophysical Research: Oceans, 2012, 117(C3),doi: 10.1029/2011JC007378.

    Google Scholar

    [50] Luo X X, Yang S L, Zhang J. The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the middle and lower Yangtze River (Changjiang) and its estuary, and subsequent sediment dispersal in the East China Sea [J]. Geomorphology, 2012, 179: 126-140. doi: 10.1016/j.geomorph.2012.05.034

    CrossRef Google Scholar

    [51] Luan H L, Ding P X, Wang Z B, et al. Decadal morphological evolution of the Yangtze Estuary in response to river input changes and estuarine engineering projects [J]. Geomorphology, 2016, 265: 12-23. doi: 10.1016/j.geomorph.2016.04.022

    CrossRef Google Scholar

    [52] 关许为, 刘晓敏. 东风西沙水库工程施工期主要风险因素及对策探析[J]. 水利科技, 2012(4):30-33

    Google Scholar

    GUAN Xuwei, LIU Xiaomin. Analysis of main risk factors and countermeasures during construction of Dongfengxisha Reservoir [J]. Hydraulic Science and Technology, 2012(4): 30-33.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(2286) PDF downloads(60) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint