2022 Vol. 42, No. 2
Article Contents

LIU Jiahui, QU Yang, LI Weiqiang, WEI Guangyi, SUN Qianyuan, LING Hongfei, CHEN Tianyu. Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 36-45. doi: 10.16562/j.cnki.0256-1492.2021052701
Citation: LIU Jiahui, QU Yang, LI Weiqiang, WEI Guangyi, SUN Qianyuan, LING Hongfei, CHEN Tianyu. Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 36-45. doi: 10.16562/j.cnki.0256-1492.2021052701

Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications

More Information
  • Most of the Pacific ferromanganese crusts have experienced phosphatization before Miocene, presumably by impregnation of phosphorus-rich component into the old crust section during the period of high productivity, that is called the product of phosphatization events. Most of the previous studies on phosphatization were based on point/line analysis of element contents or isotopes, while few studies have been devoted to the growth structure and 2-dimentional element distribution. In this study, a hydrogenetic ferromanganese crust (MDD53) sampled from the western Pacific Ocean was analyzed by electron probe X-ray microanalysis (EPMA) and micro–X-ray fluorescence scanning (μXRF), generating high resolution quantitative data on element concentrations and 2-dimensional element maps, respectively. The results of EPMA and μXRF reveal that the middle to lower part of the crust was phosphatized. The μXRF map shows that there are two types of phosphates. The first type shows sporadic enrichment of Ca and P in the top part of the crust, accompanied by strong post-depositional alterations, such as broken structure, Fe loss, and relatively Mn enrichment. The EPMA data further shows that trace element enrichment of Co and Ni as well as depletion of Pb in the phosphatized area. This observation reflects different affinity of these elements with Fe and Mn oxides, which is consistent with the hypothetic phosphatization mechanism of organic matter degradation at the crust-seawater interface and the resulting alteration of the preformed crust. The second type of phosphate is characterized by an unreported structure of continuous Ca and P enriched laminae located at the bottom of the crust. The lack of post-depositional alteration of the growth structure suggests that this type of phosphate is of syn-depositional or early diagenetic in origin, which is distinctly different from post-diagenetic alteration. The syn-depositional phosphate may indicate an early stage coprecipitation of phosphate and ferromanganese oxide colloids in a relatively shallow water depth, making it a reliable paleoceanographic indicator for high temporal resolution studies of the Late Cretaceous-Early Cenozoic period.

  • 加载中
  • [1] Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2

    CrossRef Google Scholar

    [2] De Carlo E H, Fraley C M. Chemistry and mineralogy of ferromanganese deposits from the equatorial pacific ocean[M]// Keating B H, Bolton B R. Geology and Offshore Mineral Resources of the Central Pacific Basin. Springer, New York, NY. 1992: 225-245.

    Google Scholar

    [3] Hein J R, Schwab W C, Davis A. Cobalt-and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands [J]. Marine Geology, 1988, 78(3-4): 255-283. doi: 10.1016/0025-3227(88)90113-2

    CrossRef Google Scholar

    [4] Sutherland K M, Wankel S D, Hein J R, et al. Spectroscopic insights into ferromanganese crust formation and diagenesis [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11): e2020GC009074.

    Google Scholar

    [5] Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan S D. Handbook of Marine Mineral Deposits. Florida: CRC Press, 2000: 239-279.

    Google Scholar

    [6] Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3-4): 331-351. doi: 10.1016/S0025-3227(03)00122-1

    CrossRef Google Scholar

    [7] Wang X L, Planavsky N J, Reinhard C T, et al. A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts [J]. American Journal of Science, 2016, 316(1): 64-83. doi: 10.2475/01.2016.02

    CrossRef Google Scholar

    [8] Ling H F, Burton K W, O'nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5

    CrossRef Google Scholar

    [9] Chen T Y, Ling H F, Hu R, et al. Lead isotope provinciality of central North Pacific Deep Water over the Cenozoic [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1523-1537. doi: 10.1002/ggge.20114

    CrossRef Google Scholar

    [10] Li\ng H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 345-361. doi: 10.1016/j.jpgl.2004.12.009

    CrossRef Google Scholar

    [11] Jiang X D, Zhao X, Zhao X Y, et al. A magnetic approach to unravelling the paleoenvironmental significance of nanometer-sized Fe hydroxide in NW Pacific ferromanganese deposits [J]. Earth and Planetary Science Letters, 2021, 565: 116945. doi: 10.1016/j.jpgl.2021.116945

    CrossRef Google Scholar

    [12] Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts [J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079-4094. doi: 10.1016/S0016-7037(97)00231-7

    CrossRef Google Scholar

    [13] Hein J R, Bohrson W A, Schulz M S, et al. Variations in the fine-scale composition of a Central Pacific ferromanganese crust: paleoceanographic implications [J]. Paleoceanography, 1992, 7(1): 63-77. doi: 10.1029/91PA02936

    CrossRef Google Scholar

    [14] Josso P, Rushton J, Lusty P, et al. Late Cretaceous and Cenozoic paleoceanography from North-east Atlantic ferromanganese crust microstratigraphy [J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122

    CrossRef Google Scholar

    [15] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182. doi: 10.2113/gselements.13.3.177

    CrossRef Google Scholar

    [16] Ji L H, Liu G S, Huang Y P, et al. The distribution of iodine and effects of phosphatization on it in the ferromanganese crusts from the Mid-Pacific Ocean [J]. Acta Oceanologica Sinica, 2015, 34(8): 13-19. doi: 10.1007/s13131-015-0704-x

    CrossRef Google Scholar

    [17] Nishi K, Usui A, Nakasato Y, et al. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts [J]. Ore Geology Reviews, 2017, 87: 62-70. doi: 10.1016/j.oregeorev.2016.09.004

    CrossRef Google Scholar

    [18] 王吉中. 磷酸盐化对中太平洋海山富钴结壳物质组分的影响[D]. 北京: 中国地质大学(北京), 2005.

    Google Scholar

    WANG Jizhong. Effects of pho-sphatization on composition of Co-rich crusts on central pacific seamounts[D]. Beijing: China University of Geosciences (Beijing), 2005

    Google Scholar

    [19] 崔迎春, 石学法, 刘季花. 富钴结核粒径分形特征[J]. 海洋湖沼通报, 2008(3):67-70 doi: 10.3969/j.issn.1003-6482.2008.03.009

    CrossRef Google Scholar

    CUI Yingchun, SHI Xuefa, LIU Jihua. Fractal characters of grain size of cobalt-rich nodule [J]. Transactions of Oceanology and Limnology, 2008(3): 67-70. doi: 10.3969/j.issn.1003-6482.2008.03.009

    CrossRef Google Scholar

    [20] 胡镕, 陈天宇, 凌洪飞. 晚新生代北太平洋西部深水洋流演化: 来自铁锰结壳Nd同位素的证据[J]. 科学通报, 2012, 57(31):4077-1086 doi: 10.1007/s11434-012-5322-9

    CrossRef Google Scholar

    HU Rong, CHEN Tianyu, LING Hongfei. Late Cenozoic history of deep water circulation in the western North Pacific: Evidence from Nd isotopes of ferromanganese crusts [J]. Chinese Science Bulletin, 2012, 57(31): 4077-1086. doi: 10.1007/s11434-012-5322-9

    CrossRef Google Scholar

    [21] 周枫, 凌洪飞, 陆尊礼, 等. 中太平洋铁锰结壳铅同位素研究[J]. 海洋地质与第四纪地质, 2005, 25(1):55-62

    Google Scholar

    ZHOU Feng, LING Hongfei, LU Zunli, et al. Research of lead isotope of ferromanganese crusts from central Pacific Ocean [J]. Marine Geology & Quaternary Geology, 2005, 25(1): 55-62.

    Google Scholar

    [22] Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403. doi: 10.1007/s10872-010-0034-8

    CrossRef Google Scholar

    [23] Hyeong K, Kim J, Yoo C M, et al. Cenozoic history of phosphogenesis recorded in the ferromanganese crusts of central and western Pacific seamounts: implications for deepwater circulation and phosphorus budgets [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392: 293-301. doi: 10.1016/j.palaeo.2013.09.012

    CrossRef Google Scholar

    [24] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    CrossRef Google Scholar

    [25] Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas [J]. Nature, 304(, 5928, ): 716-719.

    Google Scholar

    [26] 赵建如, 初凤友, 杨克红, 等. 中太平洋C海山富钴结壳铁锰矿物的组成、成分特征及其成因意义[J]. 海洋学研究, 2009, 27(1):15-21 doi: 10.3969/j.issn.1001-909X.2009.01.003

    CrossRef Google Scholar

    ZHAO Jianru, CHU Fengyou, YANG Kehong, et al. Manganese mineral components, compositional characteristics and their implication for genesis of cobalt-rich crust from C seamount in Central Pacific [J]. Journal of Marine Sciences, 2009, 27(1): 15-21. doi: 10.3969/j.issn.1001-909X.2009.01.003

    CrossRef Google Scholar

    [27] Frank M, O’nions R K, Hein J R, et al. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry [J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1689-1708. doi: 10.1016/S0016-7037(99)00079-4

    CrossRef Google Scholar

    [28] Friedrich G, Schmitz-Wiechowski A. Mineralogy and chemistry of a ferromanganese crust from a deep-sea hill, central Pacific, "Valdivia" cruise VA 132 [J]. Marine Geology, 1980, 37(1-2): 71-90. doi: 10.1016/0025-3227(80)90012-2

    CrossRef Google Scholar

    [29] Segl M, Mangini A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events [J]. Paleoceanography, 1989, 4(5): 511-530. doi: 10.1029/PA004i005p00511

    CrossRef Google Scholar

    [30] Manceau A, Gorshkov A I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part I. Information from XANES spectroscopy [J]. American Mineralogist, 1992, 77(11-12): 1133-1143.

    Google Scholar

    [31] Manceau A, Gorshkov A I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction [J]. American Mineralogist, 1992, 77(11-12): 1144-1157.

    Google Scholar

    [32] Liu R L, Wang M Y, Li W Q, et al. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the late Quaternary [J]. Geophysical Research Letters, 2020, 47(11): e2019GL085995.

    Google Scholar

    [33] 胡镕, 陈天宇, 凌洪飞. 晚第四纪中北太平洋铁锰结壳Fe/Mn变化: 对古气候变化的响应[J]. 高校地质学报, 2012, 18(4):751-758 doi: 10.3969/j.issn.1006-7493.2012.04.016

    CrossRef Google Scholar

    HU Rong, CHEN Tianyu, LING Hongfei. Fe/Mn variations of late Quaternary ferromanganese crusts from the central North Pacific: implications for the paleoenvironment change [J]. Geological Journal of China Universities, 2012, 18(4): 751-758. doi: 10.3969/j.issn.1006-7493.2012.04.016

    CrossRef Google Scholar

    [34] 姜学钧. 海洋铁锰氧化物沉积物中常、微量元素的地球化学特征[D]. 青岛: 中国海洋大学, 2007.

    Google Scholar

    JIANG Xuejun. Geochemistry of major and minor elements in marine ferromanganese oxide deposits[D]. Qingdao: Ocean University of China, 2007

    Google Scholar

    [35] 武光海, 周怀阳, 张海生, 等. 海山铁锰结壳中反映环境氧化程度的新指标[J]. 中国科学 D辑:地球科学, 2007, 50(3):371-384 doi: 10.1007/s11430-007-2011-7

    CrossRef Google Scholar

    WU Guanghai, ZHOU Huaiyang, ZHANG Haisheng, et al. New index of ferromanganese crusts reflecting oceanic environmental oxidation [J]. Science in China Series D:Earth Sciences, 2007, 50(3): 371-384. doi: 10.1007/s11430-007-2011-7

    CrossRef Google Scholar

    [36] Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the Central Pacific Ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136(3-4): 277-297. doi: 10.1016/S0025-3227(96)00064-3

    CrossRef Google Scholar

    [37] Hein J R, Yeh H W, Gunn S H, et al. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific Seamount deposits [J]. Paleoceanography, 1993, 8(2): 293-311. doi: 10.1029/93PA00320

    CrossRef Google Scholar

    [38] Thibault N, Harlou R, Schovsbo N H, et al. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea [J]. Climate of the Past, 2016, 12(2): 429-438. doi: 10.5194/cp-12-429-2016

    CrossRef Google Scholar

    [39] Batenburg S J, Voigt S, Friedrich O, et al. Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth [J]. Nature Communications, 2018, 9(1): 4954. doi: 10.1038/s41467-018-07457-7

    CrossRef Google Scholar

    [40] Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion [J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B4): 6829-6848. doi: 10.1029/90JB02015

    CrossRef Google Scholar

    [41] Salamy K A, Zachos J C. Latest eocene-early oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 145(1-3): 61-77. doi: 10.1016/S0031-0182(98)00093-5

    CrossRef Google Scholar

    [42] Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific Seamount areas [J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9

    CrossRef Google Scholar

    [43] Halbach P E, Sattler C D, Teichmann F, et al. Cobalt-rich and platinum-bearing manganese crust deposits on seamounts: nature, formation, and metal potential [J]. Marine Mining, 1989, 8(1): 23-39.

    Google Scholar

    [44] Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite [J]. Science, 2000, 287(5451): 269-272. doi: 10.1126/science.287.5451.269

    CrossRef Google Scholar

    [45] Josso P, Van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts [J]. Earth and Planetary Science Letters, 2021, 553: 116651. doi: 10.1016/j.jpgl.2020.116651

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2120) PDF downloads(92) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint