Citation: | LIU Jiahui, QU Yang, LI Weiqiang, WEI Guangyi, SUN Qianyuan, LING Hongfei, CHEN Tianyu. Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 36-45. doi: 10.16562/j.cnki.0256-1492.2021052701 |
Most of the Pacific ferromanganese crusts have experienced phosphatization before Miocene, presumably by impregnation of phosphorus-rich component into the old crust section during the period of high productivity, that is called the product of phosphatization events. Most of the previous studies on phosphatization were based on point/line analysis of element contents or isotopes, while few studies have been devoted to the growth structure and 2-dimentional element distribution. In this study, a hydrogenetic ferromanganese crust (MDD53) sampled from the western Pacific Ocean was analyzed by electron probe X-ray microanalysis (EPMA) and micro–X-ray fluorescence scanning (μXRF), generating high resolution quantitative data on element concentrations and 2-dimensional element maps, respectively. The results of EPMA and μXRF reveal that the middle to lower part of the crust was phosphatized. The μXRF map shows that there are two types of phosphates. The first type shows sporadic enrichment of Ca and P in the top part of the crust, accompanied by strong post-depositional alterations, such as broken structure, Fe loss, and relatively Mn enrichment. The EPMA data further shows that trace element enrichment of Co and Ni as well as depletion of Pb in the phosphatized area. This observation reflects different affinity of these elements with Fe and Mn oxides, which is consistent with the hypothetic phosphatization mechanism of organic matter degradation at the crust-seawater interface and the resulting alteration of the preformed crust. The second type of phosphate is characterized by an unreported structure of continuous Ca and P enriched laminae located at the bottom of the crust. The lack of post-depositional alteration of the growth structure suggests that this type of phosphate is of syn-depositional or early diagenetic in origin, which is distinctly different from post-diagenetic alteration. The syn-depositional phosphate may indicate an early stage coprecipitation of phosphate and ferromanganese oxide colloids in a relatively shallow water depth, making it a reliable paleoceanographic indicator for high temporal resolution studies of the Late Cretaceous-Early Cenozoic period.
[1] | Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2 |
[2] | De Carlo E H, Fraley C M. Chemistry and mineralogy of ferromanganese deposits from the equatorial pacific ocean[M]// Keating B H, Bolton B R. Geology and Offshore Mineral Resources of the Central Pacific Basin. Springer, New York, NY. 1992: 225-245. |
[3] | Hein J R, Schwab W C, Davis A. Cobalt-and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands [J]. Marine Geology, 1988, 78(3-4): 255-283. doi: 10.1016/0025-3227(88)90113-2 |
[4] | Sutherland K M, Wankel S D, Hein J R, et al. Spectroscopic insights into ferromanganese crust formation and diagenesis [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11): e2020GC009074. |
[5] | Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan S D. Handbook of Marine Mineral Deposits. Florida: CRC Press, 2000: 239-279. |
[6] | Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3-4): 331-351. doi: 10.1016/S0025-3227(03)00122-1 |
[7] | Wang X L, Planavsky N J, Reinhard C T, et al. A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts [J]. American Journal of Science, 2016, 316(1): 64-83. doi: 10.2475/01.2016.02 |
[8] | Ling H F, Burton K W, O'nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5 |
[9] | Chen T Y, Ling H F, Hu R, et al. Lead isotope provinciality of central North Pacific Deep Water over the Cenozoic [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1523-1537. doi: 10.1002/ggge.20114 |
[10] | Li\ng H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 345-361. doi: 10.1016/j.jpgl.2004.12.009 |
[11] | Jiang X D, Zhao X, Zhao X Y, et al. A magnetic approach to unravelling the paleoenvironmental significance of nanometer-sized Fe hydroxide in NW Pacific ferromanganese deposits [J]. Earth and Planetary Science Letters, 2021, 565: 116945. doi: 10.1016/j.jpgl.2021.116945 |
[12] | Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts [J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079-4094. doi: 10.1016/S0016-7037(97)00231-7 |
[13] | Hein J R, Bohrson W A, Schulz M S, et al. Variations in the fine-scale composition of a Central Pacific ferromanganese crust: paleoceanographic implications [J]. Paleoceanography, 1992, 7(1): 63-77. doi: 10.1029/91PA02936 |
[14] | Josso P, Rushton J, Lusty P, et al. Late Cretaceous and Cenozoic paleoceanography from North-east Atlantic ferromanganese crust microstratigraphy [J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122 |
[15] | Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182. doi: 10.2113/gselements.13.3.177 |
[16] | Ji L H, Liu G S, Huang Y P, et al. The distribution of iodine and effects of phosphatization on it in the ferromanganese crusts from the Mid-Pacific Ocean [J]. Acta Oceanologica Sinica, 2015, 34(8): 13-19. doi: 10.1007/s13131-015-0704-x |
[17] | Nishi K, Usui A, Nakasato Y, et al. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts [J]. Ore Geology Reviews, 2017, 87: 62-70. doi: 10.1016/j.oregeorev.2016.09.004 |
[18] | 王吉中. 磷酸盐化对中太平洋海山富钴结壳物质组分的影响[D]. 北京: 中国地质大学(北京), 2005. WANG Jizhong. Effects of pho-sphatization on composition of Co-rich crusts on central pacific seamounts[D]. Beijing: China University of Geosciences (Beijing), 2005 |
[19] | 崔迎春, 石学法, 刘季花. 富钴结核粒径分形特征[J]. 海洋湖沼通报, 2008(3):67-70 doi: 10.3969/j.issn.1003-6482.2008.03.009 CUI Yingchun, SHI Xuefa, LIU Jihua. Fractal characters of grain size of cobalt-rich nodule [J]. Transactions of Oceanology and Limnology, 2008(3): 67-70. doi: 10.3969/j.issn.1003-6482.2008.03.009 |
[20] | 胡镕, 陈天宇, 凌洪飞. 晚新生代北太平洋西部深水洋流演化: 来自铁锰结壳Nd同位素的证据[J]. 科学通报, 2012, 57(31):4077-1086 doi: 10.1007/s11434-012-5322-9 HU Rong, CHEN Tianyu, LING Hongfei. Late Cenozoic history of deep water circulation in the western North Pacific: Evidence from Nd isotopes of ferromanganese crusts [J]. Chinese Science Bulletin, 2012, 57(31): 4077-1086. doi: 10.1007/s11434-012-5322-9 |
[21] | 周枫, 凌洪飞, 陆尊礼, 等. 中太平洋铁锰结壳铅同位素研究[J]. 海洋地质与第四纪地质, 2005, 25(1):55-62 ZHOU Feng, LING Hongfei, LU Zunli, et al. Research of lead isotope of ferromanganese crusts from central Pacific Ocean [J]. Marine Geology & Quaternary Geology, 2005, 25(1): 55-62. |
[22] | Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403. doi: 10.1007/s10872-010-0034-8 |
[23] | Hyeong K, Kim J, Yoo C M, et al. Cenozoic history of phosphogenesis recorded in the ferromanganese crusts of central and western Pacific seamounts: implications for deepwater circulation and phosphorus budgets [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392: 293-301. doi: 10.1016/j.palaeo.2013.09.012 |
[24] | Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4 |
[25] | Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas [J]. Nature, 304(, 5928, ): 716-719. |
[26] | 赵建如, 初凤友, 杨克红, 等. 中太平洋C海山富钴结壳铁锰矿物的组成、成分特征及其成因意义[J]. 海洋学研究, 2009, 27(1):15-21 doi: 10.3969/j.issn.1001-909X.2009.01.003 ZHAO Jianru, CHU Fengyou, YANG Kehong, et al. Manganese mineral components, compositional characteristics and their implication for genesis of cobalt-rich crust from C seamount in Central Pacific [J]. Journal of Marine Sciences, 2009, 27(1): 15-21. doi: 10.3969/j.issn.1001-909X.2009.01.003 |
[27] | Frank M, O’nions R K, Hein J R, et al. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry [J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1689-1708. doi: 10.1016/S0016-7037(99)00079-4 |
[28] | Friedrich G, Schmitz-Wiechowski A. Mineralogy and chemistry of a ferromanganese crust from a deep-sea hill, central Pacific, "Valdivia" cruise VA 132 [J]. Marine Geology, 1980, 37(1-2): 71-90. doi: 10.1016/0025-3227(80)90012-2 |
[29] | Segl M, Mangini A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events [J]. Paleoceanography, 1989, 4(5): 511-530. doi: 10.1029/PA004i005p00511 |
[30] | Manceau A, Gorshkov A I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part I. Information from XANES spectroscopy [J]. American Mineralogist, 1992, 77(11-12): 1133-1143. |
[31] | Manceau A, Gorshkov A I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction [J]. American Mineralogist, 1992, 77(11-12): 1144-1157. |
[32] | Liu R L, Wang M Y, Li W Q, et al. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the late Quaternary [J]. Geophysical Research Letters, 2020, 47(11): e2019GL085995. |
[33] | 胡镕, 陈天宇, 凌洪飞. 晚第四纪中北太平洋铁锰结壳Fe/Mn变化: 对古气候变化的响应[J]. 高校地质学报, 2012, 18(4):751-758 doi: 10.3969/j.issn.1006-7493.2012.04.016 HU Rong, CHEN Tianyu, LING Hongfei. Fe/Mn variations of late Quaternary ferromanganese crusts from the central North Pacific: implications for the paleoenvironment change [J]. Geological Journal of China Universities, 2012, 18(4): 751-758. doi: 10.3969/j.issn.1006-7493.2012.04.016 |
[34] | 姜学钧. 海洋铁锰氧化物沉积物中常、微量元素的地球化学特征[D]. 青岛: 中国海洋大学, 2007. JIANG Xuejun. Geochemistry of major and minor elements in marine ferromanganese oxide deposits[D]. Qingdao: Ocean University of China, 2007 |
[35] | 武光海, 周怀阳, 张海生, 等. 海山铁锰结壳中反映环境氧化程度的新指标[J]. 中国科学 D辑:地球科学, 2007, 50(3):371-384 doi: 10.1007/s11430-007-2011-7 WU Guanghai, ZHOU Huaiyang, ZHANG Haisheng, et al. New index of ferromanganese crusts reflecting oceanic environmental oxidation [J]. Science in China Series D:Earth Sciences, 2007, 50(3): 371-384. doi: 10.1007/s11430-007-2011-7 |
[36] | Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the Central Pacific Ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136(3-4): 277-297. doi: 10.1016/S0025-3227(96)00064-3 |
[37] | Hein J R, Yeh H W, Gunn S H, et al. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific Seamount deposits [J]. Paleoceanography, 1993, 8(2): 293-311. doi: 10.1029/93PA00320 |
[38] | Thibault N, Harlou R, Schovsbo N H, et al. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea [J]. Climate of the Past, 2016, 12(2): 429-438. doi: 10.5194/cp-12-429-2016 |
[39] | Batenburg S J, Voigt S, Friedrich O, et al. Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth [J]. Nature Communications, 2018, 9(1): 4954. doi: 10.1038/s41467-018-07457-7 |
[40] | Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion [J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B4): 6829-6848. doi: 10.1029/90JB02015 |
[41] | Salamy K A, Zachos J C. Latest eocene-early oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 145(1-3): 61-77. doi: 10.1016/S0031-0182(98)00093-5 |
[42] | Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific Seamount areas [J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9 |
[43] | Halbach P E, Sattler C D, Teichmann F, et al. Cobalt-rich and platinum-bearing manganese crust deposits on seamounts: nature, formation, and metal potential [J]. Marine Mining, 1989, 8(1): 23-39. |
[44] | Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite [J]. Science, 2000, 287(5451): 269-272. doi: 10.1126/science.287.5451.269 |
[45] | Josso P, Van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts [J]. Earth and Planetary Science Letters, 2021, 553: 116651. doi: 10.1016/j.jpgl.2020.116651 |
Location of ferromanganese crusts MDD53 in the Western Pacific and the schematically major currents in this area[22]
Micro–X-ray fluorescence images of the top to bottom section of MDD53
Element composition of MDD53 analyzed by electron probe
Relation between (a) P and Ca、(b) Co and Mn、(c) Ni and Mn、(d) Pb and Mn、(e) Si and Fe、(f) Pb and Fe in MDD53 analysed by EPMA
Relative differences in average elemental composition of phosphatized parts to the non-phosphatized parts of MDD53