2021 Vol. 41, No. 5
Article Contents

LI Fakun, DAI Liming, DU Xiaodong, CAI Guofu, LI Sanzhong, DONG Hao, WANG Yu. Numerical modeling of the coupling between strike-slip faulting and sedimentation: A case from the Yangjiang Sag of northern South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 139-150. doi: 10.16562/j.cnki.0256-1492.2021040601
Citation: LI Fakun, DAI Liming, DU Xiaodong, CAI Guofu, LI Sanzhong, DONG Hao, WANG Yu. Numerical modeling of the coupling between strike-slip faulting and sedimentation: A case from the Yangjiang Sag of northern South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 139-150. doi: 10.16562/j.cnki.0256-1492.2021040601

Numerical modeling of the coupling between strike-slip faulting and sedimentation: A case from the Yangjiang Sag of northern South China Sea

More Information
  • To dynamically shape the fine geomorphic landscape of a basin is a key technology required in efficient oil and gas exploration. In this paper, the Yangjiang Sag in the Pearl River Mouth Basin on the northern margin of the South China Sea is selected as a case to explore the NW-trending Yangjiang-Yitong’ansha Blind Fault Zone(YYBFZ) and its control over the distribution patterns of Cenozoic depocenters in its periphery. Badlands’ numerical sedimentation simulation is used to quantitatively analyze the kinematic characteristics of the YYBFZ for further understanding the Cenozoic tectono-sedimentary coupling process of the Yangjiang Sag. The simulation results suggest that the YYBFZ was a sinistral strike-slip fault zone formed by the end of Eocene, and the strike slip process can be divided into two stages. The early stage is a slow strike slip stage, with a strike-slip displacement of about 800 m, and the depocenters of the Enping 19 Subsag migrate along the slip direction of the fault; In the late stage, however, the slip was fast and the displacement of the strike slip may reach the figure about 1200 m, and along the simulation section, obvious flower-like structures are observed. At the same time, the depocenters of the Enping 19 Subsag accelerated its move northward with rotation anticlockwise.

  • 加载中
  • [1] 姜衍, 张向涛, 龙祖烈, 等. 南海北部珠江口盆地烃源岩成因: 阳江凹陷的资源潜力[J]. 大地构造与成矿学, 2021, 45(1):90-107

    Google Scholar

    JIANG Yan, ZHANG Xiangtao, LONG Zulie, et al. Formation of source rocks in the Pearl River mouth basin, northern south China sea: resource potential of the Yangjiang Sag [J]. Geotectonica et Metallogenia, 2021, 45(1): 90-107.

    Google Scholar

    [2] 杜晓东, 刘军, 徐乐意, 等. 南海北缘东部揭阳凹陷的东沙运动: 对油气成藏的影响[J]. 大地构造与成矿学, 2021, 45(1):201-210

    Google Scholar

    DU Xiaodong, LIU Jun, XU Leyi, et al. The Dongsha movement in the Jieyang Sag at the Northern South China Sea Margin: control on hydrocarbon traps [J]. Geotectonica et Metallogenia, 2021, 45(1): 201-210.

    Google Scholar

    [3] 朱定伟, 彭光荣, 张忠涛, 等. 油气"穿断运移"模式、评价方法与应用: 以珠江口盆地恩平凹陷为例[J]. 大地构造与成矿学, 2021, 45(1):140-147

    Google Scholar

    ZHU Dingwei, PENG Guangrong, ZHANG Zhongtao, et al. Model of oil-gas cross-fault migration, evaluation and application: a case in the Enping sag of pearl river mouth basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 140-147.

    Google Scholar

    [4] 刘雨晴, 吴智平, 程燕君, 等. 南海北缘古近纪裂陷结构时空差异及控制因素: 以珠江口盆地为例[J]. 中国矿业大学学报, 2019, 48(2):367-376

    Google Scholar

    LIU Yuqing, WU Zhiping, CHENG Yanjun, et al. Spatial and temporal difference of Paleogene rift structure and its controlling factors in the northern South China Sea: a case study of Pearl River Mouth basin [J]. Journal of China University of Mining & Technology, 2019, 48(2): 367-376.

    Google Scholar

    [5] 李三忠, 索艳慧, 刘鑫, 等. 南海的盆地群与盆地动力学[J]. 海洋地质与第四纪地质, 2012, 32(6):55-78

    Google Scholar

    LI Sanzhong, SUO Yanhui, LIU Xin, et al. Basin dynamics and basin groups of the South China Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(6): 55-78.

    Google Scholar

    [6] 程世秀, 李三忠, 索艳慧, 等. 南海北部新生代盆地群构造特征及其成因[J]. 海洋地质与第四纪地质, 2012, 32(6):79-93

    Google Scholar

    CHENG Shixiu, LI Sanzhong, SUO Yanhui, et al. Cenozoic tectonics and dynamics of basin groups of the northern South China sea [J]. Marine Geology & Quaternary Geology, 2012, 32(6): 79-93.

    Google Scholar

    [7] Tang X Y, Yang S C, Zhu J Z, et al. Tectonic subsidence of the Zhu 1 sub-basin in the pearl river mouth basin, northern South China Sea [J]. Frontiers of Earth Science, 2017, 11(4): 729-739. doi: 10.1007/s11707-016-0610-3

    CrossRef Google Scholar

    [8] Li Y J, Jiang Z L, Liang S, et al. Hydrocarbon generation in the lacustrine mudstones of the Wenchang formation in the Baiyun sag of the pearl river mouth basin, northern South China Sea [J]. Energy & Fuels, 2016, 30(1): 626-637.

    Google Scholar

    [9] 吕宝凤, 殷征欣, 蔡周荣, 等. 南海北部新生代构造演化序列及其油气成藏意义[J]. 地质学报, 2012, 86(8):1249-1261 doi: 10.3969/j.issn.0001-5717.2012.08.008

    CrossRef Google Scholar

    LV Baofeng, YIN Zhengxin, CAI Zhourong, et al. Cenozoic tectonic evolution sequence in northern South China Sea and its oil/gas singificance [J]. Acta Geologica Sinica, 2012, 86(8): 1249-1261. doi: 10.3969/j.issn.0001-5717.2012.08.008

    CrossRef Google Scholar

    [10] Ma B S, Qi J F, Chen W C, et al. Fault interaction and evolution during two‐phase rifting in the Xijiang sag, pearl river mouth basin, northern South China Sea [J]. Geological Journal, 2020, 55(2): 1128-1147. doi: 10.1002/gj.3474

    CrossRef Google Scholar

    [11] 李三忠, 索艳慧, 刘鑫, 等. 南海的基本构造特征与成因模型: 问题与进展及论争[J]. 海洋地质与第四纪地质, 2012, 32(6):35-53

    Google Scholar

    LI Sanzhong, SUO Yanhui, LIU Xin, et al. Basic strcutural pattern and tectonic models of the South China Sea: problems, advances and controversies [J]. Marine Geology & Quaternary Geology, 2012, 32(6): 35-53.

    Google Scholar

    [12] 吕彩丽, 张功成, 杨东升. 珠江口盆地珠二坳陷文昌组构造差异性与动力学成因机制[J]. 地学前缘, 2017, 24(6):333-341

    Google Scholar

    LV Caili, ZHANG Gongcheng, YANG Dongsheng. Differential structure and dynamic mechanism of Wenchang formation in the Zhu H depression of the Pearl River mouth basin [J]. Earth Science Frontiers, 2017, 24(6): 333-341.

    Google Scholar

    [13] 陈汉宗, 吴湘杰, 周蒂, 等. 珠江口盆地中新生代主要断裂特征和动力背景分析[J]. 热带海洋学报, 2005, 24(2):52-61 doi: 10.3969/j.issn.1009-5470.2005.02.007

    CrossRef Google Scholar

    CHEN Hanzong, WU Xiangjie, ZHOU Di, et al. Meso-cenozoic faults in Zhujiang river mouth basin and their geodynamic background [J]. Journal of Tropical Oceanography, 2005, 24(2): 52-61. doi: 10.3969/j.issn.1009-5470.2005.02.007

    CrossRef Google Scholar

    [14] Li Y H, Zhu R W, Liu H L, et al. The cenozoic activities of Yangjiang-Yitongdong fault: insights from analysis of the tectonic characteristics and evolution processes in western Zhujiang (Pearl) river mouth basin [J]. Acta Oceanologica Sinica, 2019, 38(9): 87-101. doi: 10.1007/s13131-019-1477-x

    CrossRef Google Scholar

    [15] 刘欣颖, 吴静, 朱定伟, 等. 珠江口盆地多期走滑构造与叠合型拉分盆地: 以阳江东凹为例[J]. 大地构造与成矿学, 2021, 45(1):6-19

    Google Scholar

    LIU Xinying, WU Jing, ZHU Dingwei, et al. Superimposition of Strike-slip Faults and Pull-apart Basins in the Pearl River mouth basin: a case study from the eastern Yangjiang sag [J]. Geotectonica et Metallogenia, 2021, 45(1): 6-19.

    Google Scholar

    [16] 高阳东, 张向涛, 彭光荣, 等. 珠江口盆地成盆-成烃-成藏: 代序[J]. 大地构造与成矿学, 2021, 45(1):1-5

    Google Scholar

    GAO Yangdong, ZHANG Xiangtao, PENG Guangrong, et al. Basin formation, hydrocarbon maturation and oil accumulation of the Pearl River mouth basin: preface [J]. Geotectonica et Metallogenia, 2021, 45(1): 1-5.

    Google Scholar

    [17] 陆蕾蕾, 姜素华, 索艳慧, 等. 南海珠江口盆地走滑构造与油气成藏机制[J]. 大地构造与成矿学, 2021, 45(1):108-122

    Google Scholar

    LU Leilei, JIANG Suhua, SUO Yanhui, et al. Relationship Between Strike-slip structure and hydrocarbon accumulation in the Pearl River mouth basin in the northern South China Sea [J]. Geotectonica et Metallogenia, 2021, 45(1): 108-122.

    Google Scholar

    [18] 杨海长, 徐建永, 武爱俊, 等. 珠三坳陷阳江凹陷构造特征及其对油气成藏的影响[J]. 海洋石油, 2011, 31(2):20-24 doi: 10.3969/j.issn.1008-2336.2011.02.020

    CrossRef Google Scholar

    YANG Haichang, XU Jianyong, WU Aijun, et al. Structural features and impact on hydrocarbon accumulation in Yangjiang Sag of Zhu Ⅲ depression [J]. Offshore Oil, 2011, 31(2): 20-24. doi: 10.3969/j.issn.1008-2336.2011.02.020

    CrossRef Google Scholar

    [19] 李辉, 陈胜红, 张迎朝, 等. 珠江口盆地珠三坳陷断裂特征与油气成藏[J]. 海洋地质与第四纪地质, 2014, 34(3):115-124

    Google Scholar

    LI Hui, CHEN Shenghong, ZHANG Yingzhao, et al. Faults in the Zhu-3 depression of pearl river mouth basin and their control over hydrocarbon accumulation [J]. Marine Geology & Quaternary Geology, 2014, 34(3): 115-124.

    Google Scholar

    [20] 彭光荣, 张向涛, 许新明, 等. 南海北部珠江口盆地阳江凹陷油气勘探重要发现与认识[J]. 中国石油勘探, 2019, 24(3):267-279 doi: 10.3969/j.issn.1672-7703.2019.03.001

    CrossRef Google Scholar

    PENG Guangrong, ZHANG Xiangtao, XU Xinming, et al. Important discoveries and understandings of oil and gas exploration in Yangjiang sag of the Pearl River mouth basin, northern South China Sea [J]. China Petroleum Exploration, 2019, 24(3): 267-279. doi: 10.3969/j.issn.1672-7703.2019.03.001

    CrossRef Google Scholar

    [21] 田立新, 张向涛, 彭光荣, 等. 珠江口盆地阳江凹陷石油地质特征及成藏主控因素[J]. 中国海上油气, 2020, 32(1):13-22

    Google Scholar

    TIAN Lixin, ZHANG Xiangtao, PENG Guangrong, et al. Petroleum geological characteristics and main controlling factors of the Yangjiang sag in Pearl River mouth basin [J]. China Offshore Oil and Gas, 2020, 32(1): 13-22.

    Google Scholar

    [22] 陈雯雯. 珠江口盆地珠Ⅲ坳陷北部文昌组沉积相研究[D]. 中国地质大学(北京)硕士学位论文, 2012.

    Google Scholar

    CHEN Wenwen. Study on Wenchang formation in northern Zhu Ⅲ depression of Pearl River mouth basin[D]. Master Dissertation of China University of Geosciences (Beijing), 2012.

    Google Scholar

    [23] 占华旺, 蔡国富, 张志伟, 等. 南海北缘古近纪断裂活动规律及控盆特征: 以阳江东凹为例[J]. 大地构造与成矿学, 2021, 45(1):20-39

    Google Scholar

    ZHAN Huawang, CAI Guofu, ZHANG Zhiwei, et al. Paleogene fault activity and basin controlling characteristics in the northern south China sea margin: a case study of the eastern Yangjiang sag [J]. Geotectonica et Metallogenia, 2021, 45(1): 20-39.

    Google Scholar

    [24] 汪晓萌, 彭光荣, 吴静, 等. 珠江口盆地恩平21洼文昌组沉积期原型盆地及其对优质烃源岩的控制[J]. 大地构造与成矿学, 2021, 45(1):158-167

    Google Scholar

    WANG Xiaomeng, PENG Guangrong, WU Jing, et al. Prototype basin and its control on high-quality source rocks during the depositional period of Wenchang formation in Enping 21 sub-sag, Pearl River mouth basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 158-167.

    Google Scholar

    [25] 姜华, 王华, 李俊良, 等. 珠江口盆地珠三坳陷层序地层样式分析[J]. 海洋地质与第四纪地质, 2009, 29(1):87-93

    Google Scholar

    JIANG Hua, WANG Hua, LI Junliang, et al. Analysis on sequence formation styles of Zhu-3 depression in Pearl River mouth basin [J]. Marine Geology & Quaternary Geology, 2009, 29(1): 87-93.

    Google Scholar

    [26] 李思田, 林畅松, 张启明, 等. 南海北部大陆边缘盆地幕式裂陷的动力过程及10 Ma以来的构造事件[J]. 科学通报, 1999, 44(1):10-23 doi: 10.1007/BF03182877

    CrossRef Google Scholar

    LI Sitian, LIN Changsong, ZHANG Qiming, et al. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea [J]. Chinese Science Bulletin, 1999, 44(1): 10-23. doi: 10.1007/BF03182877

    CrossRef Google Scholar

    [27] 杜晓东, 彭光荣, 吴静, 等. 珠江口盆地阳江东凹断层特征及其对油气成藏的影响[J]. 新疆石油地质, 2020, 41(4):414-421

    Google Scholar

    DU Xiaodong, PENG Guangrong, WU Jing, et al. Faults and its impacts on petroleum accumulation in eastern Yangjiang Sag, Pearl River mouth basin [J]. Xinjiang Petroleum Geology, 2020, 41(4): 414-421.

    Google Scholar

    [28] Peng J W, Pang X Q, Xiao S, et al. Secondary migration of hydrocarbons in the Zhujiang formation in the Huixi half-Graben, Pearl River mouth basin, South China Sea [J]. Canadian Journal of Earth Sciences, 2016, 53(2): 189-201. doi: 10.1139/cjes-2015-0076

    CrossRef Google Scholar

    [29] Lyu C F, Chen G J, Du G C, et al. Diagenesis and reservoir quality evolution of shelf-margin sandstones in Pearl River mouth basin, South China Sea [J]. Journal of Petroleum Science and Technology, 2014, 4(1): 1-19.

    Google Scholar

    [30] Su M, Alves T M, Li W, et al. Reassessing two contrasting late Miocene-Holocene stratigraphic frameworks for the Pearl River Mouth Basin, northern South China Sea [J]. Marine and Petroleum Geology, 2019, 102: 899-913. doi: 10.1016/j.marpetgeo.2018.12.034

    CrossRef Google Scholar

    [31] Wang X D, Zhang X T, Lin H M, et al. Paleogene geological framework and tectonic evolution of the central anticlinal zone in Lufeng 13 sag, Pearl River Mouth Basin [J]. Petroleum Research, 2019, 4(3): 238-249. doi: 10.1016/j.ptlrs.2019.05.002

    CrossRef Google Scholar

    [32] 刘志峰, 刘志鹏, 肖伶俐, 等. 珠三坳陷北部珠海组—韩江组沉积演化及储盖组合[J]. 海洋地质前沿, 2013, 29(9):25-31

    Google Scholar

    LIU Zhifeng, LIU Zhipeng, XIAO Lingli, et al. Facies evolution and reservoir-seal assemblages in the Zhuhai and Hanjiang formations, north of Zhu Ⅲ depression, Pearl River mouth basin [J]. Marine Geology Frontiers, 2013, 29(9): 25-31.

    Google Scholar

    [33] 方竞男. 珠江口盆地第三系沉积体系演变与生储盖组合[D]. 中国地质大学(北京)硕士学位论文, 2013.

    Google Scholar

    FANG Jingnan. Evolution of sedimentary system and source-reservoir-caprock association in tertiary of Pearl River Mouth Basin[D]. Master Dissertation of China University of Geosciences (Beijing), 2013.

    Google Scholar

    [34] 于海洋, 索艳慧, 杜晓东, 等. 珠江口盆地渐-中新世古气候及物源特征: 以阳江东凹为例[J]. 大地构造与成矿学, 2021, 45(1):53-63

    Google Scholar

    YU Haiyang, SUO Yanhui, DU Xiaodong, et al. Oligocene-Miocene provenance and paleoclimate of the Pearl River Mouth basin: a case study of the eastern Yangjiang Sag [J]. Geotectonica et Metallogenia, 2021, 45(1): 53-63.

    Google Scholar

    [35] 梁卫, 彭光荣, 朱定伟, 等. 珠江口盆地阳江东凹古近系构造特征与勘探潜力[J]. 大地构造与成矿学, 2021, 45(1):168-178

    Google Scholar

    LIANG Wei, PENG Guangrong, ZHU Dingwei, et al. Paleogene structures and exploration potential in the Eastern Yangjiang Sag, Pearl River mouth basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 168-178.

    Google Scholar

    [36] 杨悦, 彭光荣, 朱定伟, 等. 珠江口盆地阳江东凹裂陷期沉积环境及其构造控制[J]. 大地构造与成矿学, 2021, 45(1):79-89

    Google Scholar

    YANG Yue, PENG Guangrong, ZHU Dingwei, et al. Syn-rifting sedimentary environment and its tectonic control in the eastern Yangjiang Sag of the Pearl River mouth basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 79-89.

    Google Scholar

    [37] 刘军, 彭光荣, 朱定伟, 等. 珠江口盆地阳江凹陷东部地区断控成藏条件[J]. 大地构造与成矿学, 2021, 45(1):123-130

    Google Scholar

    LIU Jun, PENG Guangrong, ZHU Dingwei, et al. Fault-controlled hydrocarbon accumulation in the eastern Yangjiang Sag, Pearl River mouth basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 123-130.

    Google Scholar

    [38] 蔡国富, 张向涛, 彭光荣, 等. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动[J]. 大地构造与成矿学, 2021, 45(1):40-52

    Google Scholar

    CAI Guofu, ZHANG Xiangtao, PENG Guangrong, et al. Neogene volcanism and tectonics along the Yangjiang-Yitong'ansha fault zone in the northern South China Sea margin [J]. Geotectonica et Metallogenia, 2021, 45(1): 40-52.

    Google Scholar

    [39] 宋海斌, 郝天珧, 江为为, 等. 南海地球物理场特征与基底断裂体系研究[J]. 地球物理学进展, 2002, 17(1):24-34 doi: 10.3969/j.issn.1004-2903.2002.01.003

    CrossRef Google Scholar

    SONG Haibin, HAO Tianyao, JIANG Weiwei, et al. Researches on geophysical field characteristics and basement fault system of South China Sea [J]. Progress in Geophysics, 2002, 17(1): 24-34. doi: 10.3969/j.issn.1004-2903.2002.01.003

    CrossRef Google Scholar

    [40] 鲁宝亮, 王璞珺, 张功成, 等. 南海北部陆缘盆地基底结构及其油气勘探意义[J]. 石油学报, 2011, 32(4):580-587 doi: 10.7623/syxb201104004

    CrossRef Google Scholar

    LU Baoliang, WANG Pujun, ZHANG Gongcheng, et al. Basement structures of an epicontinental basin in the northern South China Sea and their significance in petroleum prospect [J]. Acta Petrolei Sinica, 2011, 32(4): 580-587. doi: 10.7623/syxb201104004

    CrossRef Google Scholar

    [41] Salles T, Hardiman L. Badlands: An open-source, flexible and parallel framework to study landscape dynamics [J]. Computers & Geosciences, 2016, 91: 77-89.

    Google Scholar

    [42] Salles T. Badlands: A parallel basin and landscape dynamics model [J]. Softwarex, 2016, 5: 195-202. doi: 10.1016/j.softx.2016.08.005

    CrossRef Google Scholar

    [43] Braun J, Sambridge M. Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization [J]. Basin Research, 1997, 9(1): 27-52. doi: 10.1046/j.1365-2117.1997.00030.x

    CrossRef Google Scholar

    [44] Tucker G, Lancaster S, Gasparini N, et al. The channel-hillslope integrated landscape development model (CHILD)[M]//Harmon R S, Doe W W. Landscape Erosion and Evolution Modeling. Boston, MA: Springer, 2001: 319-388.

    Google Scholar

    [45] 刘泽, 李三忠, Bukhari S W H, 等. 动态古地貌再造: Badlands软件在盆地分析中的应用[J]. 古地理学报, 2020, 22(1):29-38 doi: 10.7605/gdlxb.2020.01.003

    CrossRef Google Scholar

    LIU Ze, LI Sanzhong, Bukhari S W H, et al. Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis [J]. Journal of Palaeogeography, 2020, 22(1): 29-38. doi: 10.7605/gdlxb.2020.01.003

    CrossRef Google Scholar

    [46] Chen A, Darbon J, Morel J M. Landscape evolution models: A review of their fundamental equations [J]. Geomorphology, 2014, 219: 68-86. doi: 10.1016/j.geomorph.2014.04.037

    CrossRef Google Scholar

    [47] Pelletier J D. Fluvial and slope‐wash erosion of soil‐mantled landscapes: detachment‐or transport‐limited? [J]. Earth Surface Processes and Landforms, 2012, 37(1): 37-51. doi: 10.1002/esp.2187

    CrossRef Google Scholar

    [48] Fernandes N F, Dietrich W E. Hillslope evolution by diffusive processes: the timescale for equilibrium adjustments [J]. Water Resources Research, 1997, 33(6): 1307-1318. doi: 10.1029/97WR00534

    CrossRef Google Scholar

    [49] Perron J T, Kirchner J W, Dietrich W E. Formation of evenly spaced ridges and valleys [J]. Nature, 2009, 460(7254): 502-505. doi: 10.1038/nature08174

    CrossRef Google Scholar

    [50] Lague D, Hovius N, Davy P. Discharge, discharge variability, and the bedrock channel profile [J]. Journal of Geophysical Research: Atmospheres, 2016, 110(F4): F04006.

    Google Scholar

    [51] Whipple K X, Tucker G E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs [J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17661-17674. doi: 10.1029/1999JB900120

    CrossRef Google Scholar

    [52] Tucker G E, Hancock G R. Modelling landscape evolution [J]. Earth Surface Processes and Landforms, 2010, 35(1): 28-50. doi: 10.1002/esp.1952

    CrossRef Google Scholar

    [53] Howard A D. Thresholds in river regimes[M]//Coates D R, Vitek J D. Thresholds in Geomorphology. London: George Allen and Unwin Ltd., 1980: 227-258.

    Google Scholar

    [54] Wickert A D. Open-source modular solutions for flexural isostasy: gFlex v1.0 [J]. Geoscientific Model Development, 2016, 9(3): 997-1017. doi: 10.5194/gmd-9-997-2016

    CrossRef Google Scholar

    [55] Tucker G E, Slingerland R L. Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 12229-12243. doi: 10.1029/94JB00320

    CrossRef Google Scholar

    [56] Ruetenik G. Long-term landscape evolution modeling: the role of dynamic topography, flexural isostasy, and sea level[D]. Doctor Dissertation of Syracuse University, 2017.

    Google Scholar

    [57] Hodgetts D, Egan S S, Williams G D. Flexural modelling of continental lithosphere deformation: a comparison of 2D and 3D techniques [J]. Tectonophysics, 1998, 294(1-2): 1-20. doi: 10.1016/S0040-1951(98)00084-5

    CrossRef Google Scholar

    [58] 杜文波, 邱燕, 黄文凯, 等. 南海西缘曾母西断裂构造特征及其对盆地沉积发育的控制作用[J]. 海洋地质与第四纪地质, 2021, 41(2):100-108

    Google Scholar

    DU Wenbo, QIU Yan, HUANG Wenkai, et al. Zengmu Xi fault on the western-border of South China Sea and its control over the sedimentation of the Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(2): 100-108.

    Google Scholar

    [59] 胡小猛, 郭家秀, 胡向阳. 汾河地堑湖盆第四纪地貌—沉积特征的构造控制[J]. 地理学报, 2010, 65(1):73-81 doi: 10.11821/xb201001008

    CrossRef Google Scholar

    HU Xiaomeng, GUO Jiaxiu, HU Xiangyang. The development of morpho-sediment of quaternary in Fenhe river Graben basins and the neotectonic movement [J]. Acta Geographica Sinica, 2010, 65(1): 73-81. doi: 10.11821/xb201001008

    CrossRef Google Scholar

    [60] 李磊, 王英民, 张莲美, 等. 尼日尔三角洲坡脚逆冲带沉积样式及构造控制[J]. 地球科学—中国地质大学学报, 2008, 33(5):643-650 doi: 10.3799/dqkx.2008.079

    CrossRef Google Scholar

    LI Lei, WANG Yingmin, ZHANG Lianmei, et al. Sedimentary patterns and structural control across toe thrust belts, Niger Delta [J]. Earth Science—Journal of China University of Geosciences, 2008, 33(5): 643-650. doi: 10.3799/dqkx.2008.079

    CrossRef Google Scholar

    [61] 姜雪, 刘丽芳, 孙和风, 等. 气候与构造控制下湖相优质烃源岩的差异分布: 以渤中凹陷为例[J]. 石油学报, 2019, 40(2):165-175 doi: 10.7623/syxb201902004

    CrossRef Google Scholar

    JIANG Xue, LIU Lifang, SUN Hefeng, et al. Differential distribution of high-quality lacustrine source rocks controlled by climate and tectonic: a case study from Bozhong sag [J]. Acta Petrolei Sinica, 2019, 40(2): 165-175. doi: 10.7623/syxb201902004

    CrossRef Google Scholar

    [62] 高红芳, 钟和贤, 孙美静, 等. 南海海盆东南部大型深水浊积扇体系及其成因的构造控制[J]. 中国地质, 2020, 47(5):1395-1406

    Google Scholar

    GAO Hongfang, ZHONG Hexian, SUN Meijing, et al. The large deep-water turbidity fan system in southeastern South China Sea Basin: Formation and tectonic constraint [J]. Geology in China, 2020, 47(5): 1395-1406.

    Google Scholar

    [63] Haq B U, Hardenbol J, Vail P R. Chronology of Fluctuating Sea Levels Since the Triassic [J]. Science, 1987, 235(4793): 1156-1167. doi: 10.1126/science.235.4793.1156

    CrossRef Google Scholar

    [64] 许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, 73(3):193-205 doi: 10.3321/j.issn:0001-5717.1999.03.001

    CrossRef Google Scholar

    XU Zhiqin, YANG Jingsui, ZHANG Jianxin, et al. A comparison between the tectonic units on the two sides of the Altun Sinistral Strike-slip fault and the Mechanism of lithospheric Shearing [J]. Acta Geologica Sinica, 1999, 73(3): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001

    CrossRef Google Scholar

    [65] 李海兵, 许志琴, 杨经绥, 等. 阿尔金断裂带最大累积走滑位移量: 900km?[J]. 地质通报, 2007, 26(10):1288-1298 doi: 10.3969/j.issn.1671-2552.2007.10.007

    CrossRef Google Scholar

    LI Haibing, XU Zhiqin, YANG Jingsui, et al. The maximum cumulative strike-slip displacement of the Altyn Tagh Fault: 900 km? [J]. Geological Bulletin of China, 2007, 26(10): 1288-1298. doi: 10.3969/j.issn.1671-2552.2007.10.007

    CrossRef Google Scholar

    [66] Zhang Y Q, Wei S, Dong S W. Cenozoic deformation history of the Tancheng–Lujiang Fault Zone, north China, and dynamic implications [J]. Island Arc, 2003, 12(3): 281-293. doi: 10.1046/j.1440-1738.2003.00395.x

    CrossRef Google Scholar

    [67] Hsiao L Y, Graham S A, Tilander N. Seismic reflection imaging of a major strike-slip fault zone in a rift system: Paleogene structure and evolution of the Tan-Lu fault system, Liaodong Bay, Bohai, offshore China [J]. AAPG Bulletin, 2004, 88(1): 71-97. doi: 10.1306/09090302019

    CrossRef Google Scholar

    [68] Liu Y J, Neubauer F, Genser J, et al. Geochronology of the initiation and displacement of the Altyn Strike-Slip Fault, western China [J]. Journal of Asian Earth Sciences, 2007, 29(2): 243-252.

    Google Scholar

    [69] Gilder S A, Coe R S, Wu H R, et al. Cretaceous and Tertiary paleomagnetic results from Southeast China and their tectonic implications [J]. Earth & Planetary Science Letters, 1993, 117(3-4): 637-652.

    Google Scholar

    [70] Gilder S A, Leloup P H, Courtillot V, et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data [J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B7): 15365-15390. doi: 10.1029/1999JB900123

    CrossRef Google Scholar

    [71] 万天丰, 朱鸿. 郯庐断裂带的最大左行走滑断距及其形成时期[J]. 高校地质学报, 1996, 2(1):14-27

    Google Scholar

    WAN Tianfeng, ZHU Hong. The maximum sinistral Strike slip and its Forming age of Tancheng-Lujiang Fault zone [J]. Geological Journal of Universities, 1996, 2(1): 14-27.

    Google Scholar

    [72] 吴奎, 何京, 张中巧, 等. 基于构造物理模拟实验的走滑量求取[J]. 石油地球物理勘探, 2019, 54(4):891-900

    Google Scholar

    WU Kui, HE Jing, ZHANG Zhongqiao, et al. Strike-slip fault displacement calculation based on structure physical simulation [J]. Oil Geophysical Prospecting, 2019, 54(4): 891-900.

    Google Scholar

    [73] 马晓倩, 刘军, 朱定伟, 等. 多期走滑拉分盆地的沉积响应: 以南海北部珠江口盆地为例[J]. 大地构造与成矿学, 2021, 45(1):64-78

    Google Scholar

    MA Xiaoqian, LIU Jun, ZHU Dingwei, et al. Sedimentary response of multi-stage pull-apart basin: insights from the Pearl River Mouth Basin in the Northern South China Sea margin [J]. Geotectonica et Metallogenia, 2021, 45(1): 64-78.

    Google Scholar

    [74] 吴静, 朱定伟, 赵鹏, 等. 断裂复合汇聚脊对新近系油气远距离富集的控制作用: 以珠江口盆地阳江东凹与恩平凹陷为例[J]. 大地构造与成矿学, 2021, 45(1):131-139

    Google Scholar

    WU Jing, ZHU Dingwei, ZHAO Peng, et al. Controls of faulted composite accumulation ridge on the Long distance migration and accumulation of Neogene hydrocarbon: a case study of the Eastern Yangjiang Sag and the Enping Sag in the Pearl River Mouth Basin [J]. Geotectonica et Metallogenia, 2021, 45(1): 131-139.

    Google Scholar

    [75] 林鹤鸣, 刘培, 汪旭东, 等. 珠一坳陷始新世文昌组沉积期构造转换对源-汇体系的控制[J]. 大地构造与成矿学, 2021, 45(1):188-200

    Google Scholar

    LIN Heming, LIU Pei, WANG Xudong, et al. Influences of structural transformation on source-to-sink system during the depositional period of Wenchang formation of Eocene in the Zhu Ⅰ depression [J]. Geotectonica et Metallogenia, 2021, 45(1): 188-200.

    Google Scholar

    [76] 肖坤泽, 童亨茂. 走滑断层研究进展及启示[J]. 地质力学学报, 2020, 26(2):151-166 doi: 10.12090/j.issn.1006-6616.2020.26.02.015

    CrossRef Google Scholar

    XIAO Kunze, TONG Hengmao. Progress on strike-slip fault research and its significance [J]. Journal of Geomechanics, 2020, 26(2): 151-166. doi: 10.12090/j.issn.1006-6616.2020.26.02.015

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1809) PDF downloads(34) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint