Citation: | QIN Yachao, LAN Xianhong, LU Kai, HU Gang, LUAN Xiwu, CHEN Shanshan. The summer thermohaline structure of 2011 of the southern East China Sea shelf and its implications for the intrusion of Taiwan Warm Current and Kuroshio Current[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 151-159. doi: 10.16562/j.cnki.0256-1492.2021032402 |
Conductivity–temperature–depth (CTD) measurements along 5 transects including 30 hydrographic stations were carried out over the continental shelf of the southern East China Sea in July 2011. The thermohaline structure of waters and its characteristics are analyzed and the influence of the Kuroshio Branch Current and the Taiwan Warm Current on the hydrography of the shelf water discussed. Results show that shallow and deep thermoclines occur extensively. The former is present within 20 m in water depth, with weak gradients but apparent intraday evolution. The latter is present over the mid and outer shelf and the Taiwan Strait. The lower boundary of deep thermocline dwells at the water depth of ~80 m over the mid and outer shelf. It has a thickness of ~10 m, with stable and strong gradients of ~0.8 ℃/m. In contrast, deep thermocline dwells at the depths between 14~30 m in the northern Taiwan Strait. Its thickness usually varies between 6~10 m, with relatively weak gradients between 0.2~0.5 ℃/m. Salt fingering is observed around the deep thermocline due to the differences in temperature and salinity between the upper and lower waters. A cold water mass is observed below deep thermoclines at the isobaths between 90~110 m, with temperature between 16.8~17.6 ℃. The gradients of deep thermocline drop to 0.2~0.5 ℃/m over the outer shelf, their strata are synchronously lifted, and their thicknesses expanded, indicating the consequence of the Kuroshio intrusion. Therefore, once the deep thermocline gradient is lower than 0.6 ℃/m coupled with expanded thickness of its stratum, the Kuroshio intrusion will be distinguished. As a sensitive proxy, weakened thermocline gradients indicate that the Kuroshio front may reach up to the 110 m isobath over the outer shelf in summer. Disappearance of deep thermocline demonstrates that the Taiwan Warm Current prevails throughout the water column over the mid shelf at the isobaths between 50~80 m. Its influence reduces gradually from south to north. The deep water in the northern Taiwan Strait has a lower mean temperature of 22.52 ℃, which is 3 ℃ much lower than that of the deep water in the mid shelf of the southern East China Sea. Such a discrepancy suggests that the deep water of the Taiwan Warm Current may be derived from the inflow of the Kuroshio Branch Current.
[1] | 李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008: 86-87. LI Jiabiao. Regional Geology of the East China Sea[M]. Beijing: China Ocean Press, 2008: 86-87. |
[2] | 孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006: 106-129, 272-291. SUN Xiangping. Regional Oceanography of China Seas[M]. Beijing: China Ocean Press, 2006: 106-129, 272-291. |
[3] | 苏纪兰, 袁业立. 中国近海水文[M]. 北京: 海洋出版社, 2005: 214-221, 229-244. SU Jilan, YUAN Yeli. Offshore Hydrology in China[M]. Beijing: China Ocean Press, 2005: 214-221, 229-244. |
[4] | Chern C S, Wang J, Wang D P. The exchange of kuroshio and East China Sea shelf water [J]. Journal of Geophysical Research: Oceans, 1990, 95(C9): 16017-16023. doi: 10.1029/JC095iC09p16017 |
[5] | Wang W T, Yu Z M, Song X X, et al. Intrusion pattern of the Offshore Kuroshio Branch Current and its effects on nutrient contributions in the East China Sea [J]. Journal of Geophysical Research: Oceans, 2018, 123(3): 2116-2128. doi: 10.1002/2017JC013538 |
[6] | Saito H. The kuroshio: its recognition, scientific activities and emerging issues[M]//Nagai T, Saito H, Suzuki K, et al. Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics. Washington, D C: Geophysical Monograph Series, 2019, doi: 10.1002/9781119428428.ch1. |
[7] | Hsueh Y, Wang J, Chern C S. The intrusion of the Kuroshio across the continental shelf northeast of Taiwan [J]. Journal of Geophysical Research: Oceans, 1992, 97(C9): 14323-14330. doi: 10.1029/92JC01401 |
[8] | Hsin Y C, Wu C R, Shaw P T. Spatial and temporal variations of the Kuroshio east of Taiwan, 1982-2005: a numerical study [J]. Journal of Geophysical Research: Oceans, 2008, 113(C4): C04002. doi: 10.1029/2007JC004485 |
[9] | Yang D Z, Yin B S, Liu Z L, et al. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer [J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05015. doi: 10.1029/2010JC006777 |
[10] | Wang J, Oey L Y. Inter-annual and decadal fluctuations of the Kuroshio in East China Sea and connection with surface fluxes of momentum and heat [J]. Geophysical Research Letters, 2014, 41(23): 8538-8546. doi: 10.1002/2014GL062118 |
[11] | Yang D Z, Huang R X, Yin B S, et al. Topographic beta spiral and onshore intrusion of the Kuroshio Current [J]. Geophysical Research Letters, 2018, 45(1): 287-296. doi: 10.1002/2017GL076614 |
[12] | Wu C R, Hsin Y C, Chiang T L, et al. Seasonal and interannual changes of the Kuroshio intrusion onto the East China Sea Shelf [J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5039-5051. doi: 10.1002/2013JC009748 |
[13] | 苏纪兰, 潘玉球. 台湾以北陆架环流动力学初步研究[J]. 海洋学报, 1989, 11(1):1-14 SU Jilan, PAN Yuqiu. Preliminary study on the circulation dynamics over the continental shelf north of Taiwan [J]. Acta Oceanologica Sinica, 1989, 11(1): 1-14. |
[14] | 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(4):1-16 SU Jilan. A review of circulation dynamics of the coastal oceans near China [J]. Acta Oceanologica Sinica, 2001, 23(4): 1-16. |
[15] | Cui X, Yang D Z, Sun C J, et al. New insight into the onshore intrusion of the Kuroshio into the East China Sea [J]. Journal of Geophysical Research: Oceans, 2021, 126(2): e2020JC016248. doi: 10.1029/2020JC016248 |
[16] | Chen C T A, Sheu D D. Does the Taiwan warm current originate in the Taiwan strait in wintertime? [J]. Journal of Geophysical Research: Oceans, 2006, 111(C4): C04005. doi: 10.1029/2005JC003281 |
[17] | Jan S, Sheu D D, Kuo H M. Water mass and throughflow transport variability in the Taiwan Strait [J]. Journal of Geophysical Research: Oceans, 2006, 111(C12): C12012. doi: 10.1029/2006JC003656 |
[18] | Lian E G, Yang S Y, Wu H, et al. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf [J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4790-4803. doi: 10.1002/2016JC011869 |
[19] | 国家技术监督局. GB12763.7-1991 海洋调查规范 海洋调查资料处理[S]. 北京: 中国标准出版社, 1992: 68-70. State Bureau of Technical Supervision. GB12763.7-1991 The Specification for Oceanographic Survey-Oceanographic Survey Data Processing[S]. Beijing: Standards Press of China, 1992: 68-70. |
[20] | Sorkin A, Sorkin V, Leizerson I. Salt fingers in double-diffusive systems [J]. Physica A: Statistical Mechanics and its Applications, 2002, 303(1-2): 13-26. doi: 10.1016/S0378-4371(01)00396-X |
[21] | Chen H W, Liu C T, Matsuno T, et al. Temporal variations of volume transport through the Taiwan Strait, as identified by three-year measurements [J]. Continental Shelf Research, 2016, 114: 41-53. doi: 10.1016/j.csr.2015.12.010 |
[22] | Katoh O, Morinaga K, Nakagawa N. Current distributions in the southern East China Sea in summer [J]. Journal of Geophysical Research: Oceans, 2000, 105(C4): 8565-8573. doi: 10.1029/1999JC900309 |
Map of the study area showing the locations of 30 hydrological stations in the summer, 2011, southern East China Sea
Water column profiles of temperature in the summer, 2011, southern East China Sea
Deep thermocline characteristics in the summer, 2011, southern East China Sea
Water column profiles of salinity in the summer, 2011, southern East China Sea
Spatial distribution of temperature at the water depth of 25 m in summer, 2011, southern East China Sea
The distribution of the mid-shelf deep cold water mass, the influence of the Taiwan Warm Current, and the Kuroshio intrusion in summer, 2011, southern East China Sea