2021 Vol. 41, No. 5
Article Contents

SUN Guohong, TIAN Liyan, LI Xiaohu, ZHANG Hanyu, CHEN Lingxuan, LIU Hongling. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138. doi: 10.16562/j.cnki.0256-1492.2021021701
Citation: SUN Guohong, TIAN Liyan, LI Xiaohu, ZHANG Hanyu, CHEN Lingxuan, LIU Hongling. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138. doi: 10.16562/j.cnki.0256-1492.2021021701

A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives

More Information
  • The Southwest Indian Ridge (SWIR), as an ultraslow spreading ridge, has attracted great attentions from the geo-society of the world in the past three decades due to its unique morphology, crustal architecture, crustal accretion mode, volcanism, hydrothermal activities and deep mantle processes. This paper is devoted to the recent research progress on the petrology and geochemistry of basalt,gabbro and mantle peridotite collected from the SWIR. The geochemical data well revealed the variations of the whole ridge and ridge segments. Based on the data mentioned above, we described and discussed the main factors, which control the geochemical variations, magma supply and crustal accretion. In the oblique spreading ridge segment of 9°~16°E, the tectonics-dominated ocean ridge spreading patterns resulted in the wider oceanic crust accretion zone with significant geochemical anomalies; in the 50°~51°E ridge segment, strong volcanic activities occur, and its genetic mechanism includes different points of view, such as the interaction between the Crozet hotspot and SWIR, the micro hotspot, and the remelting of the residual mantle left behind by the former melting events. The latest research about the Longqi hydrothermal area (~ 49.7° E) suggests that the hydrothermal circulation is closely related to the development of detachment faults, and the maximum depth of hydrothermal circulation may reach 6 km below the Moho boundary. Therefore, it is suggested that the future study be strengthened in such issues as the mantle heterogeneity in different spatial scales, the tectonic-magmatic processes in the ridge system, ridge-plume interaction, and the seafloor hydrothermal activity and deposits.

  • 加载中
  • [1] Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge [J]. Nature, 2003, 426(6965): 405-412. doi: 10.1038/nature02128

    CrossRef Google Scholar

    [2] Sauter D, Cannat M. The ultraslow spreading southwest Indian ridge[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D.C.: American Geophysical Union, 2010, 88: 153-173.

    Google Scholar

    [3] Smith D K, Escartin J, Schouten H, et al. Active long-lived faults emerging along slow-spreading Mid-Ocean Ridges [J]. Oceanography, 2012, 25(1): 94-99. doi: 10.5670/oceanog.2012.07

    CrossRef Google Scholar

    [4] Baines A G, Cheadle M J, Dick H J B, et al. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge [J]. Geology, 2003, 31(12): 1105-1108. doi: 10.1130/G19829.1

    CrossRef Google Scholar

    [5] Searle R C, Cannat M, Fujioka K, et al. FUJI Dome: A large detachment fault near 64° E on the very slow-spreading southwest Indian Ridge [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(8): 9105.

    Google Scholar

    [6] Cannat M, Sauter D, Escartin J, et al. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges [J]. Earth and Planetary Science Letters, 2009, 288(1-2): 174-183. doi: 10.1016/j.jpgl.2009.09.020

    CrossRef Google Scholar

    [7] 索艳慧.印度洋构造-岩浆过程:剩余地幔布格重力异常证据[D].中国海洋大学博士学位论文,2014

    Google Scholar

    SUO Yanhui.Tectonic-magmatic processes of the Indian Ocean:Evidence on the residual mantle Bouguer gravity anomaly[D].Doctor Dissertation of Ocean University of China,2014.

    Google Scholar

    [8] Carbotte S M, Smith D K, Cannat M, et al. Tectonic and magmatic segmentation of the Global Ocean Ridge System: A synthesis of observations [J]. Geological Society, London, Special Publications, 2016, 420(1): 249-295. doi: 10.1144/SP420.5

    CrossRef Google Scholar

    [9] 余星, 迪克·亨利, 李小虎, 等. 西南印度洋中脊地质构造特征及其地球动力学意义[J]. 地球物理学报, 2020, 63(10):3585-3603 doi: 10.6038/cjg2020N0230

    CrossRef Google Scholar

    YU Xing, DICK H, LI Xiaohu, et al. The geotectonic features of the Southwest Indian Ridge and its geodynamic implications [J]. Chinese Journal of Geophysics, 2020, 63(10): 3585-3603. doi: 10.6038/cjg2020N0230

    CrossRef Google Scholar

    [10] Zhou H Y, Dick H J B. Thin crust as evidence for depleted mantle supporting the Marion Rise [J]. Nature, 2013, 494(7436): 195-200. doi: 10.1038/nature11842

    CrossRef Google Scholar

    [11] Li J B, Jian H C, Chen Y J, et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge [J]. Geophysical Research Letters, 2015, 42(8): 2656-2663. doi: 10.1002/2014GL062521

    CrossRef Google Scholar

    [12] Gao C G, Dick H J B, Liu Y, et al. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise [J]. Lithos, 2016, 246-247: 48-60. doi: 10.1016/j.lithos.2015.12.007

    CrossRef Google Scholar

    [13] Sauter D, Cannat M, Meyzen C M, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: interaction with the Crozet hotspot? [J]. Geophysical Journal International, 2009, 179(2): 687-699. doi: 10.1111/j.1365-246X.2009.04308.x

    CrossRef Google Scholar

    [14] Yang A Y, Zhao T P, Zhou M F, et al. Isotopically enriched N‐MORB: A new geochemical signature of off‐axis plume‐ridge interaction-A case study at 50°28′E, Southwest Indian Ridge [J]. Journal of Geophysical Research:Solid Earth, 2017, 122(1): 191-213. doi: 10.1002/2016JB013284

    CrossRef Google Scholar

    [15] Breton T, Nauret F, Pichat S, et al. Geochemical heterogeneities within the Crozet hotspot [J]. Earth and Planetary Science Letters, 2013, 376: 126-136. doi: 10.1016/j.jpgl.2013.06.020

    CrossRef Google Scholar

    [16] Yu X, Dick H J B. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2020, 531: 116002. doi: 10.1016/j.jpgl.2019.116002

    CrossRef Google Scholar

    [17] Patriat P, Sauter D, Munschy M, et al. A survey of the southwest Indian ridge axis between Atlantis II fracture zone and the Indian Ocean Triple Junction: regional setting and large scale segmentation [J]. Marine Geophysical Researches, 1997, 19(6): 457-480. doi: 10.1023/A:1004312623534

    CrossRef Google Scholar

    [18] Standish J J, Dick H J B, Michael P J, et al. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9°–25°E): Major element chemistry and the importance of process versus source [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05004.

    Google Scholar

    [19] Patriat P, Segoufin J. Reconstruction of the central Indian Ocean [J]. Tectonophysics, 1988, 155(1-4): 211-234. doi: 10.1016/0040-1951(88)90267-3

    CrossRef Google Scholar

    [20] Cannat M, Rommevaux-Jestin C, Sauter D, et al. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E) [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B10): 22825-22843. doi: 10.1029/1999JB900195

    CrossRef Google Scholar

    [21] Niu X W, Ruan A G, Li J B, et al. Along‐axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50° E) From A wide‐angle seismic experiment [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(2): 468-485. doi: 10.1002/2014GC005645

    CrossRef Google Scholar

    [22] Sauter D, Patriat P, Rommevaux-Jestin C, et al. The Southwest Indian Ridge between 49°15'E and 57°E: focused accretion and magma redistribution [J]. Earth and Planetary Science Letters, 2001, 192(3): 303-317. doi: 10.1016/S0012-821X(01)00455-1

    CrossRef Google Scholar

    [23] Escrig S, Capmas F, Dupré B, et al. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts [J]. Nature, 2004, 431(7004): 59-63. doi: 10.1038/nature02904

    CrossRef Google Scholar

    [24] Hanan B B, Blichert-Toft J, Hemond C, et al. Pb and Hf isotope variations along the Southeast Indian Ridge and the dynamic distribution of MORB source domains in the upper mantle [J]. Earth and Planetary Science Letters, 2013, 375: 196-208. doi: 10.1016/j.jpgl.2013.05.028

    CrossRef Google Scholar

    [25] Janney P E, Le Roex A P, Carlson R W. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E) [J]. Journal of Petrology, 2005, 46(12): 2427-2464. doi: 10.1093/petrology/egi060

    CrossRef Google Scholar

    [26] Janney P E, Le Roex A P. Mantle heterogeneity and mixing beneath the Bouvet triple junction region: Hf isotope constraints from the westernmost southwest Indian ridge (0-11°E)[C]//AGU Fall Meeting Abstracts. AGU, 2013.

    Google Scholar

    [27] Meyzen C M, Ludden J N, Humler E, et al. New insights into the origin and distribution of the Dupal isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11): Q11K11.

    Google Scholar

    [28] Meyzen C M, Blichert-Toft J, Ludden J N, et al. Isotopic portrayal of the Earth’s upper mantle flow field [J]. Nature, 2007, 447(7148): 1069-1074. doi: 10.1038/nature05920

    CrossRef Google Scholar

    [29] Mahoney J, LE Roex A P, Peng Z, et al. Southwestern limits of Indian Ocean ridge mantle and the origin of Low 206Pb/204Pb mid‐ocean ridge basalt: Isotope systematics of the central Southwest Indian Ridge (17°-50° E) [J]. Journal of Geophysical Research:Solid Earth, 1992, 97(B13): 19771-19790. doi: 10.1029/92JB01424

    CrossRef Google Scholar

    [30] Kurz M D, Le Roex A, Dick H J B. Isotope geochemistry of the oceanic mantle near the Bouvet triple junction [J]. Geochimica et Cosmochimica Acta, 1998, 62(5): 841-852. doi: 10.1016/S0016-7037(97)00383-9

    CrossRef Google Scholar

    [31] Georgen J E, Kurz M D, Dick H J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24° E) [J]. Earth and Planetary Science Letters, 2003, 206(3-4): 509-528. doi: 10.1016/S0012-821X(02)01106-8

    CrossRef Google Scholar

    [32] Gautheron C, Moreira M, Gerin C, et al. Constraints on the DUPAL anomaly from helium isotope systematics in the Southwest Indian mid-ocean ridge basalts [J]. Chemical Geology, 2015, 417: 163-172. doi: 10.1016/j.chemgeo.2015.10.005

    CrossRef Google Scholar

    [33] Dick H J B, Natlan J H, Alt J C, et al. A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2000, 179(1): 31-51. doi: 10.1016/S0012-821X(00)00102-3

    CrossRef Google Scholar

    [34] Zhao M H, Qiu X L, Li J B, et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39′E) [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4544-4563. doi: 10.1002/ggge.20264

    CrossRef Google Scholar

    [35] Natland J H, Dick H J B. Formation of the lower ocean crust and the crystallization of gabbroic cumulates At A very slowly spreading ridge [J]. Journal of Volcanology and Geothermal Research, 2001, 110(3-4): 191-233. doi: 10.1016/S0377-0273(01)00211-6

    CrossRef Google Scholar

    [36] Robinson C J, Bickle M J, Minshull T A, et al. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting [J]. Earth and Planetary Science Letters, 2001, 188(3-4): 383-398. doi: 10.1016/S0012-821X(01)00329-6

    CrossRef Google Scholar

    [37] Rioux M, Cheadle M J, John B E, et al. The temporal and spatial distribution of magmatism during lower crustal accretion at an ultraslow-spreading ridge: High-Precision U–Pb zircon dating of ODP Holes 735B and 1105A, Atlantis Bank, Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2016, 449: 395-406. doi: 10.1016/j.jpgl.2016.05.047

    CrossRef Google Scholar

    [38] Bach W, Alt J C, Niu Y L, et al. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176) [J]. Geochimica et Cosmochimica Acta, 2001, 65(19): 3267-3287. doi: 10.1016/S0016-7037(01)00677-9

    CrossRef Google Scholar

    [39] Gao Y J, Hoefs J, Przybilla R, et al. A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B [J]. Chemical Geology, 2006, 233(3-4): 217-234. doi: 10.1016/j.chemgeo.2006.03.005

    CrossRef Google Scholar

    [40] Holm P M. Sr, Nd and Pb isotopic composition of in situ lower crust at the Southwest Indian Ridge: results from ODP Leg 176 [J]. Chemical Geology, 2002, 184(3-4): 195-216. doi: 10.1016/S0009-2541(01)00364-3

    CrossRef Google Scholar

    [41] 靳野. 西南印度洋脊ODP 735B钻孔上部辉长岩研究[D]. 中国地质大学 (北京)博士学位论文, 2013

    Google Scholar

    JIN Ye. An approach to the Gabbros from the upper part of ODP 735B hole at the Southwest Indian ridge[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2013.

    Google Scholar

    [42] Kempton P D, Hawkesworth C J, Fowler M. Geochemistry and isotopic composition of gabbros from Layer 3 of the Indian ocean crust, Leg 118, Hole 735B[M]//Von Herzen R P, Robinson P T. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1991, 118: 127-143.

    Google Scholar

    [43] Warren J M. Global variations in abyssal peridotite compositions [J]. Lithos, 2016, 248-251: 193-219. doi: 10.1016/j.lithos.2015.12.023

    CrossRef Google Scholar

    [44] Warren J M, Shimizu N, Sakaguchi C, et al. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions [J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B12): B12203. doi: 10.1029/2008JB006186

    CrossRef Google Scholar

    [45] Seyler M, Brunelli D, Toplis M J, et al. Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°E-68°E): Trace element compositions of along‐axis dredged peridotites [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(9): Q0AC15.

    Google Scholar

    [46] Li W, Liu C Z, Tao C H, et al. Osmium isotope compositions and highly siderophile element abundances in abyssal peridotites from the Southwest Indian Ridge: Implications for evolution of the oceanic upper mantle [J]. Lithos, 2019, 346-347: 105167. doi: 10.1016/j.lithos.2019.105167

    CrossRef Google Scholar

    [47] Snow J E, Hart S R, Dick H J B. Nd and Sr isotope evidence linking mid-ocean-ridge basalts and abyssal peridotites [J]. Nature, 1994, 371(6492): 57-60. doi: 10.1038/371057a0

    CrossRef Google Scholar

    [48] Mallick S, Dick H J B, Sachi-Kocher A, et al. Isotope and trace element insights into heterogeneity of subridge mantle [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(6): 2438-2453. doi: 10.1002/2014GC005314

    CrossRef Google Scholar

    [49] Mallick S, Standish J J, Bizimis M. Constraints on the mantle mineralogy of an ultra-slow ridge: Hafnium isotopes in abyssal peridotites and basalts from The 9-25°E Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2015, 410: 42-53. doi: 10.1016/j.jpgl.2014.10.048

    CrossRef Google Scholar

    [50] Salters V J M, Dick H J B. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites [J]. Nature, 2002, 418(6893): 68-72. doi: 10.1038/nature00798

    CrossRef Google Scholar

    [51] Cannat M, Sauter D, Bezos A, et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04002.

    Google Scholar

    [52] Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian ridge: effects of transform offsets [J]. Earth and Planetary Science Letters, 2001, 187(3-4): 283-300. doi: 10.1016/S0012-821X(01)00293-X

    CrossRef Google Scholar

    [53] Tao C H, Lin J, Guo S Q, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge [J]. Geology, 2012, 40(1): 47-50. doi: 10.1130/G32389.1

    CrossRef Google Scholar

    [54] Yue X H, Li H M, Ren J Y, et al. Seafloor hydrothermal activity along mid-ocean ridge with strong melt supply: study from segment 27, southwest Indian ridge [J]. Scientific Reports, 2019, 9(1): 9874. doi: 10.1038/s41598-019-46299-1

    CrossRef Google Scholar

    [55] Tao C H, Seyfried W E Jr, Lowell R P, et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge [J]. Nature Communications, 2020, 11(1): 1300. doi: 10.1038/s41467-020-15062-w

    CrossRef Google Scholar

    [56] Jian H C, Singh S C, Chen Y J, et al. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge [J]. Geology, 2017, 45(2): 143-146. doi: 10.1130/G38356.1

    CrossRef Google Scholar

    [57] Ito G, Lin J, Graham D. Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction [J]. Reviews of Geophysics, 2003, 41(4): 1017. doi: 10.1029/2002RG000117

    CrossRef Google Scholar

    [58] Meyzen C M, Toplis M J, Humler E, et al. A discontinuity in mantle composition beneath the southwest Indian ridge [J]. Nature, 2003, 421(6924): 731-733. doi: 10.1038/nature01424

    CrossRef Google Scholar

    [59] Maclennan J, Mckenzie D, Gronv ld K, et al. Crustal accretion under northern Iceland [J]. Earth and Planetary Science Letters, 2001, 191(3-4): 295-310. doi: 10.1016/S0012-821X(01)00420-4

    CrossRef Google Scholar

    [60] Li W, Jin Z M, Li H M, et al. High water content in primitive mid-ocean ridge basalt from southwest Indian ridge (50.56°E): implications for recycled hydrous component in the mantle [J]. Journal of Earth Science, 2017, 28(3): 411-421. doi: 10.1007/s12583-017-0731-y

    CrossRef Google Scholar

    [61] Li W, Soustelle V, Jin Z M, et al. Origins of water content variations in the suboceanic upper mantle: Insight from Southwest Indian Ridge abyssal peridotites [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3): 1298-1329. doi: 10.1002/2016GC006767

    CrossRef Google Scholar

    [62] Smith D K, Tivey M A, Schouten H, et al. Locating the spreading axis along 80 km of the Mid-Atlantic Ridge south of the Atlantis Transform [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B4): 7599-7612. doi: 10.1029/1998JB900064

    CrossRef Google Scholar

    [63] Standish J J, Sims K W W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge [J]. Nature Geoscience, 2010, 3(4): 286-292. doi: 10.1038/ngeo824

    CrossRef Google Scholar

    [64] Tucholke B E, Behn M D, Buck W R, et al. Role of melt supply in oceanic detachment faulting and formation of megamullions [J]. Geology, 2008, 36(6): 455-458. doi: 10.1130/G24639A.1

    CrossRef Google Scholar

    [65] Anderson D L. Speculations on the nature and cause of mantle heterogeneity [J]. Tectonophysics, 2006, 416(1-4): 7-22. doi: 10.1016/j.tecto.2005.07.011

    CrossRef Google Scholar

    [66] Mougel B, Agranier A, Hemond C, et al. A highly unradiogenic lead isotopic signature revealed by volcanic rocks from the East Pacific Rise [J]. Nature Communications, 2014, 5: 4474. doi: 10.1038/ncomms5474

    CrossRef Google Scholar

    [67] Mougel B, Moreira M, Agranier A. A "high 4He/3He" mantle material detected under the East Pacific Rise (15°4′N) [J]. Geophysical Research Letters, 2015, 42(5): 1375-1383. doi: 10.1002/2014GL062921

    CrossRef 4He/3He" mantle material detected under the East Pacific Rise (15°4′N)" target="_blank">Google Scholar

    [68] Wanless V D, Shaw A M. Lower crustal crystallization and melt evolution at mid-ocean ridges [J]. Nature Geoscience, 2012, 5(9): 651-655. doi: 10.1038/ngeo1552

    CrossRef Google Scholar

    [69] Li W, Tao C H, Zhang W, et al. Melt inclusions in plagioclase macrocrysts at mount Jourdanne, Southwest Indian ridge (~64° E): implications for an enriched mantle source and shallow magmatic processes [J]. Minerals, 2019, 9(8): 493. doi: 10.3390/min9080493

    CrossRef Google Scholar

    [70] 张涛, 林间, 高金耀. 90Ma以来热点与西南印度洋中脊的交互作用: 海台与板内海山的形成[J]. 中国科学:地球科学, 2011, 54(8):1177-1188 doi: 10.1007/s11430-011-4219-9

    CrossRef Google Scholar

    ZHANG Tao, LIN Jian, GAO Jinyao. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts [J]. Science China Earth Sciences, 2011, 54(8): 1177-1188. doi: 10.1007/s11430-011-4219-9

    CrossRef Google Scholar

    [71] Baker E T, German C R. On the global distribution of hydrothermal vent fields[C]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC: American Geophysical Union, 2004, 148: 245-266.

    Google Scholar

    [72] Baker E T, Haymon R M, Resing J A, et al. High-resolution surveys along the hot spot-affected Galápagos Spreading Center: 1. Distribution of hydrothermal activity [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(9): Q09003.

    Google Scholar

    [73] Melchert B, Devey C W, German C R, et al. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern mid-Atlantic ridge [J]. Earth and Planetary Science Letters, 2008, 275(1-2): 61-69. doi: 10.1016/j.jpgl.2008.08.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(2389) PDF downloads(95) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint