2021 Vol. 41, No. 5
Article Contents

WANG Zhen, TIAN Jun. The Late Miocene C4 vegetation expansion and its relation with the partial pressure of carbon dioxide in atmospheric[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 160-172. doi: 10.16562/j.cnki.0256-1492.2021032401
Citation: WANG Zhen, TIAN Jun. The Late Miocene C4 vegetation expansion and its relation with the partial pressure of carbon dioxide in atmospheric[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 160-172. doi: 10.16562/j.cnki.0256-1492.2021032401

The Late Miocene C4 vegetation expansion and its relation with the partial pressure of carbon dioxide in atmospheric

More Information
  • A large number of terrestrial and marine geological records has confirmed the global asynchronous expansion of C4 vegetation in Late Miocene, which started in the eastern and northwestern Africa as early as 10 Ma, and then spread to South Asia, South Africa, North America and other areas in a wide range around 8~6 Ma. Finally, the C4 vegetation expanded again in Pliocene, and the present ecological pattern is basically formed. However, the mechanism of the C4 vegetation expansion in Late Miocene still remains unclear, with the major debate concentrating on climate and CO2 changes. The recent atmospheric partial pressure pattern of carbon dioxide (pCO2) reconstructed shows a downward trend of the atmospheric CO2 concentration during Late Miocene. Considering the late Miocene C4 vegetation expansion areas, the proxy-derived atmospheric pCO2 is consistent with that needed for the C4 vegetation expansion in a numerical simulation experiment, which highlights the role of the atmospheric pCO2 in the Late Miocene C4 vegetation expansion. The low time resolution of the existed proxy-derived atmospheric pCO2 records determines their low reliability on both the long-term trend and the absolute values. The next step should focus on the reconstruction of the reliable high-resolution record of the atmospheric pCO2 for Late Miocene, the key to unlock the relationship between the atmospheric pCO2 and the C4 vegetation expansion in Late Miocene, which has guiding significance for the study of future climate change.

  • 加载中
  • [1] Haq B U, Worsley T R, Burckle L H, et al. Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events [J]. Geology, 1980, 8(9): 427-431. doi: 10.1130/0091-7613(1980)8<427:LMMCSA>2.0.CO;2

    CrossRef Google Scholar

    [2] Bickert T, Haug G H, Tiedemann R. Late Neogene benthic stable isotope record of Ocean Drilling Program Site 999: implications for Caribbean paleoceanography, organic carbon burial, and the Messinian Salinity Crisis [J]. Paleoceanography, 2004, 19(1): PA1023.

    Google Scholar

    [3] Diester-Haass L, Billups K, Emeis K C. Late Miocene carbon isotope records and marine biological productivity: Was there a (dusty) link? [J]. Paleoceanography, 2006, 21(4): PA4216.

    Google Scholar

    [4] Hodell D A, Venz-Curtis K A. Late neogene history of deepwater ventilation in the Southern Ocean [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9): Q09001.

    Google Scholar

    [5] Drury A J, John C M, Shevenell A E. Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene: New perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations [J]. Paleoceanography, 2016, 31(1): 167-184. doi: 10.1002/2015PA002881

    CrossRef Google Scholar

    [6] Drury A J, Westerhold T, Frederichs T, et al. Late Miocene climate and time scale reconciliation: Accurate orbital calibration from a deep-sea perspective [J]. Earth and Planetary Science Letters, 2017, 475: 254-266. doi: 10.1016/j.jpgl.2017.07.038

    CrossRef Google Scholar

    [7] Tian J, Ma X L, Zhou J H, et al. Subsidence of the northern South China Sea and formation of the Bashi Strait in the latest Miocene: Paleoceanographic evidences from 9-Myr high resolution benthic foraminiferal δ18O and δ13C records [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 382-391. doi: 10.1016/j.palaeo.2016.11.041

    CrossRef Google Scholar

    [8] Tian J, Ma X L, Zhou J H, et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: High resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337 [J]. Earth and Planetary Science Letters, 2018, 499: 185-196. doi: 10.1016/j.jpgl.2018.07.025

    CrossRef Google Scholar

    [9] Drury A J, Lee G P, Gray W R, et al. Deciphering the state of the late miocene to early pliocene equatorial pacific [J]. Paleoceanography and Paleoclimatology, 2018, 33(3): 246-263. doi: 10.1002/2017PA003245

    CrossRef Google Scholar

    [10] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan [J]. Nature, 1989, 342(6246): 163-166. doi: 10.1038/342163a0

    CrossRef Google Scholar

    [11] Cerling T E, Wang Y, Quade J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene [J]. Nature, 1993, 361(6410): 344-345. doi: 10.1038/361344a0

    CrossRef Google Scholar

    [12] Cerling T E, Harris J M, Macfadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary [J]. Nature, 1997, 389(6647): 153-158. doi: 10.1038/38229

    CrossRef Google Scholar

    [13] Holbourn A E, Kuhnt W, Clemens S C, et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon [J]. Nature Communications, 2018, 9(1): 1584. doi: 10.1038/s41467-018-03950-1

    CrossRef Google Scholar

    [14] Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter [J]. Chemical Geology, 1999, 161(1-3): 181-198. doi: 10.1016/S0009-2541(99)00086-8

    CrossRef Google Scholar

    [15] Latorre C, Quade J, Mcintosh W C. The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 83-96. doi: 10.1016/S0012-821X(96)00231-2

    CrossRef Google Scholar

    [16] Behrensmeyer A K, Quade J, Cerling T E, et al. The structure and rate of late Miocene expansion of C4 plants: Evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan [J]. GSA Bulletin, 2007, 119(11-12): 1486-1505. doi: 10.1130/B26064.1

    CrossRef Google Scholar

    [17] Passey B H, Ayliffe L K, Kaakinen A, et al. Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China [J]. Earth and Planetary Science Letters, 2009, 277(3-4): 443-452. doi: 10.1016/j.jpgl.2008.11.008

    CrossRef Google Scholar

    [18] Uno K T, Cerling T E, Harris J M, et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6509-6514. doi: 10.1073/pnas.1018435108

    CrossRef Google Scholar

    [19] Fox D L, Honey J G, Martin R A, et al. Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Carbon isotopes and the evolution of C4-dominated grasslands [J]. GSA Bulletin, 2012, 124(3-4): 444-462. doi: 10.1130/B30401.1

    CrossRef Google Scholar

    [20] Dupont L M, Rommerskirchen F, Mollenhauer G, et al. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants [J]. Earth and Planetary Science Letters, 2013, 375: 408-417. doi: 10.1016/j.jpgl.2013.06.005

    CrossRef Google Scholar

    [21] Hoetzel S, Dupont L, Schefuß E, et al. The role of fire in miocene to pliocene C4 grassland and ecosystem evolution [J]. Nature Geoscience, 2013, 6(12): 1027-1030. doi: 10.1038/ngeo1984

    CrossRef Google Scholar

    [22] Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification [J]. Nature Geoscience, 2019, 12(8): 657-660. doi: 10.1038/s41561-019-0399-2

    CrossRef Google Scholar

    [23] Neupane P C, Gani M R, Gani N D, et al. Neogene vegetation shift in the Nepalese Siwalik, Himalayas: A compound-specific isotopic study of lipid biomarkers [J]. The Depositional Record, 2020, 6(1): 192-202. doi: 10.1002/dep2.91

    CrossRef Google Scholar

    [24] Feakins S J, Liddy H M, Tauxe L, et al. Miocene C4 grassland expansion as recorded by the indus fan [J]. Paleoceanography and Paleoclimatology, 2020, 35(6): e2020PA003856.

    Google Scholar

    [25] Retallack G J. Cenozoic expansion of grasslands and climatic cooling [J]. The Journal of Geology, 2001, 109(4): 407-426. doi: 10.1086/320791

    CrossRef Google Scholar

    [26] Herbert T D, Lawrence K T, Tzanova A, et al. Late Miocene global cooling and the rise of modern ecosystems [J]. Nature Geoscience, 2016, 9(11): 843-847. doi: 10.1038/ngeo2813

    CrossRef Google Scholar

    [27] Sage R F, Sage T L, Kocacinar F. Photorespiration and the evolution of C4 photosynthesis [J]. Annual Review of Plant Biology, 2012, 63: 19-47. doi: 10.1146/annurev-arplant-042811-105511

    CrossRef Google Scholar

    [28] Osborne C P. Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? [J]. Journal of Ecology, 2008, 96(1): 35-45.

    Google Scholar

    [29] Pagani M, Freeman K H, Arthur M A. Late miocene atmospheric CO2 concentrations and the expansion of C4 grasses [J]. Science, 1999, 285(5429): 876-879. doi: 10.1126/science.285.5429.876

    CrossRef Google Scholar

    [30] Feakins S J. Pollen-corrected leaf wax D/H reconstructions of northeast African hydrological changes during the late Miocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 62-71. doi: 10.1016/j.palaeo.2013.01.004

    CrossRef Google Scholar

    [31] Mejía L M, Méndez-Vicente A, Abrevaya L, et al. A diatom record of CO2 decline since the late Miocene [J]. Earth and Planetary Science Letters, 2017, 479: 18-33. doi: 10.1016/j.jpgl.2017.08.034

    CrossRef Google Scholar

    [32] Sosdian S M, Greenop R, Hain M P, et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy [J]. Earth and Planetary Science Letters, 2018, 498: 362-376. doi: 10.1016/j.jpgl.2018.06.017

    CrossRef Google Scholar

    [33] Zhou H R, Helliker B R, Huber M, et al. C4 photosynthesis and climate through the lens of optimality [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 12057-12062. doi: 10.1073/pnas.1718988115

    CrossRef Google Scholar

    [34] Kürschner W M, Van Der Burgh J, Visscher H, et al. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations [J]. Marine Micropaleontology, 1996, 27(1-4): 299-312. doi: 10.1016/0377-8398(95)00067-4

    CrossRef Google Scholar

    [35] Royer D L. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration [J]. Review of Palaeobotany and Palynology, 2001, 114(1-2): 1-28. doi: 10.1016/S0034-6667(00)00074-9

    CrossRef Google Scholar

    [36] Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles [J]. Nature, 2001, 411(6835): 287-290. doi: 10.1038/35077041

    CrossRef Google Scholar

    [37] Cerling T E. Carbon dioxide in the atmosphere; evidence from cenozoic and mesozoic paleosols [J]. American Journal of Science, 1991, 291(4): 377-400. doi: 10.2475/ajs.291.4.377

    CrossRef Google Scholar

    [38] Ekart D D, Cerling T E, Montañez I P, et al. A 400 million year carbon isotope record of pedogenic carbonate; Implications for paleoatomospheric carbon dioxide [J]. American Journal of Science, 1999, 299(10): 805-827. doi: 10.2475/ajs.299.10.805

    CrossRef Google Scholar

    [39] Da J W, Zhang Y G, Wang H T, et al. An Early Pleistocene atmospheric CO2 record based on pedogenic carbonate from the Chinese loess deposits [J]. Earth and Planetary Science Letters, 2015, 426: 69-75. doi: 10.1016/j.jpgl.2015.05.053

    CrossRef Google Scholar

    [40] Jasper J P, Hayes J M. A carbon isotope record of CO2 levels during the late Quaternary [J]. Nature, 1990, 347(6292): 462-464. doi: 10.1038/347462a0

    CrossRef Google Scholar

    [41] Pagani M, Zachos J C, Freeman K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5734): 600-603. doi: 10.1126/science.1110063

    CrossRef Google Scholar

    [42] Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(2001): 20130096. doi: 10.1098/rsta.2013.0096

    CrossRef Google Scholar

    [43] Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Amsterdam: Gulf Professional Publishing, 2001.

    Google Scholar

    [44] Foster G L, Lear C H, Rae J W B. The evolution of pCO2, ice volume and climate during the middle Miocene [J]. Earth and Planetary Science Letters, 2012, 341-344: 243-254. doi: 10.1016/j.jpgl.2012.06.007

    CrossRef Google Scholar

    [45] Foster G L. Seawater pH, pCO2 and [CO2-3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera [J]. Earth and Planetary Science Letters, 2008, 271(1-4): 254-266. doi: 10.1016/j.jpgl.2008.04.015

    CrossRef Google Scholar

    [46] Rau G H, Takahashi T, Des Marais D J, et al. The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model [J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1413-1419. doi: 10.1016/0016-7037(92)90073-R

    CrossRef Google Scholar

    [47] Sun B N, Dilcher D L, Beerling D J, et al. Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 7141-7146. doi: 10.1073/pnas.1232419100

    CrossRef Google Scholar

    [48] Beerling D J, Royer D L. Fossil plants as indicators of the phanerozoic global carbon cycle [J]. Annual Review of Earth and Planetary Sciences, 2002, 30: 527-556. doi: 10.1146/annurev.earth.30.091201.141413

    CrossRef Google Scholar

    [49] Pagani M. The alkenone-CO2 proxy and ancient atmospheric carbon dioxide [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 360(1793): 609-632. doi: 10.1098/rsta.2001.0959

    CrossRef Google Scholar

    [50] Laws E A, Popp B N, Bidigare R R, et al. Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 1006.

    Google Scholar

    [51] Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates [J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 537-543. doi: 10.1016/0016-7037(92)90151-8

    CrossRef Google Scholar

    [52] Beerling D J, Royer D L. Convergent cenozoic CO2 history [J]. Nature Geoscience, 2011, 4(7): 418-420. doi: 10.1038/ngeo1186

    CrossRef Google Scholar

    [53] Greenop R, Foster G L, Wilson P A, et al. Middle Miocene climate instability associated with high-amplitude CO2 variability [J]. Paleoceanography, 2014, 29(9): 845-853. doi: 10.1002/2014PA002653

    CrossRef Google Scholar

    [54] Seki O, Foster G L, Schmidt D N, et al. Alkenone and boron-based Pliocene pCO2 records [J]. Earth and Planetary Science Letters, 2010, 292(1-2): 201-211. doi: 10.1016/j.jpgl.2010.01.037

    CrossRef Google Scholar

    [55] Bartoli G, Hönisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations [J]. Paleoceanography, 2011, 26(4): PA4213.

    Google Scholar

    [56] Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years [J]. Nature Communications, 2017, 8(1): 14845. doi: 10.1038/ncomms14845

    CrossRef Google Scholar

    [57] Cui Y, Schubert B A, Jahren A H. A 23 m.y. record of low atmospheric CO2 [J]. Geology, 2020, 48(9): 888-892. doi: 10.1130/G47681.1

    CrossRef Google Scholar

    [58] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359(6391): 117-122. doi: 10.1038/359117a0

    CrossRef Google Scholar

    [59] Harrison T M, Copeland P, Hall S A, et al. Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climatic histories of two molasse deposits [J]. The Journal of Geology, 1993, 101(2): 157-175. doi: 10.1086/648214

    CrossRef Google Scholar

    [60] Ruddiman W F. Earth’s Climate: Past and Future[M]. New York: W.H. Freeman & Sons, 2001.

    Google Scholar

    [61] O’Leary M H. Carbon isotopes in photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants [J]. BioScience, 1988, 38(5): 328-336. doi: 10.2307/1310735

    CrossRef Google Scholar

    [62] Sage R F. Environmental and evolutionary preconditionsfor the origin and diversification of the C4 photosyntheticSyndrome [J]. Plant Biology, 2001, 3(3): 202-213. doi: 10.1055/s-2001-15206

    CrossRef Google Scholar

    [63] Edwards E J, Osborne C P, Strömberg C A E, et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science [J]. Science, 2010, 328(5978): 587-591. doi: 10.1126/science.1177216

    CrossRef Google Scholar

    [64] Christin P A, Besnard G, Samaritani E, et al. Oligocene CO2 decline promoted C4 photosynthesis in grasses [J]. Current Biology, 2008, 18(1): 37-43. doi: 10.1016/j.cub.2007.11.058

    CrossRef Google Scholar

    [65] Ehleringer J R, Sage R F, Flanagan L B, et al. Climate change and the evolution of C4 photosynthesis [J]. Trends in Ecology & Evolution, 1991, 6(3): 95-99.

    Google Scholar

    [66] Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late miocene [J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1439-1454. doi: 10.1016/S0016-7037(00)00573-1

    CrossRef Google Scholar

    [67] An Z S, Huang Y S, Liu W G, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation [J]. Geology, 2005, 33(9): 705-708. doi: 10.1130/G21423.1

    CrossRef Google Scholar

    [68] Andrae J W, Mcinerney F A, Polissar P J, et al. Initial expansion of C4 vegetation in Australia during the late pliocene [J]. Geophysical Research Letters, 2018, 45(10): 4831-4840. doi: 10.1029/2018GL077833

    CrossRef Google Scholar

    [69] Jia G D, Peng P, Zhao Q H, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea [J]. Geology, 2003, 31(12): 1093-1096. doi: 10.1130/G19992.1

    CrossRef Google Scholar

    [70] France-Lanord C, Derry L A. Organic carbon burial forcing of the carbon cycle from himalayan erosion [J]. Nature, 1997, 390(6655): 65-67. doi: 10.1038/36324

    CrossRef Google Scholar

    [71] Dengler N G, Nelson T. Leaf structure and development in C4 plants[M]//Sage R F, Monson R K. C4 Plant Biology. Newbury Park, CA: Elsevier Inc., 1999, 4: 133-172.

    Google Scholar

    [72] Kanai R, Edwards G E. The biochemistry of C4 photosynthesis[M]//Sage R F, Monson R K. C4 Plant Biology. Newbury Park, CA: Elsevier Inc., 1999, 49: 87.

    Google Scholar

    [73] Hatch M D. C4 photosynthesis: a unique elend of modified biochemistry, anatomy and ultrastructure [J]. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 1987, 895(2): 81-106.

    Google Scholar

    [74] Sage R F, Wedin D A, LI M. The biogeography of C4 photosynthesis: patterns and controlling factors[M]//Sage R F, Monson R K. C4 Plant Biology. Newbury Park, CA: Elsevier Inc., 1999, 10: 313-376.

    Google Scholar

    [75] Keeley J E, Rundel P W. Fire and the Miocene expansion of C4 grasslands [J]. Ecology Letters, 2005, 8(7): 683-690. doi: 10.1111/j.1461-0248.2005.00767.x

    CrossRef Google Scholar

    [76] Karp A T, Behrensmeyer A K, Freeman K H. Grassland fire ecology has roots in the late Miocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(48): 12130-12135. doi: 10.1073/pnas.1809758115

    CrossRef Google Scholar

    [77] Bond W J, Keeley J E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems [J]. Trends in Ecology & Evolution, 2005, 20(7): 387-394.

    Google Scholar

    [78] Bond W J, Woodward F I, Midgley G F. The global distribution of ecosystems in a world without fire [J]. New Phytologist, 2005, 165(2): 525-538. doi: 10.1111/j.1469-8137.2004.01252.x

    CrossRef Google Scholar

    [79] Feakins S J, Levin N E, Liddy H M, et al. Northeast African vegetation change over 12 m. y. [J]. Geology, 2013, 41(3): 295-298. doi: 10.1130/G33845.1

    CrossRef Google Scholar

    [80] Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115(1-4): 91-116. doi: 10.1016/0031-0182(94)00108-K

    CrossRef Google Scholar

    [81] Dansgaard W. Stable isotopes in precipitation [J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993

    CrossRef Google Scholar

    [82] Tauxe L, Feakins S J. A reassessment of the chronostratigraphy of late miocene C3–C4 transitions [J]. Paleoceanography and Paleoclimatology, 2020, 35(7): e2020PA003857.

    Google Scholar

    [83] Ehleringer J R, Cerling T E, Helliker B R. C4 photosynthesis, atmospheric CO2 and climate [J]. Oecologia, 1997, 112(3): 285-299. doi: 10.1007/s004420050311

    CrossRef Google Scholar

    [84] Lu J Y, Algeo T J, Zhuang G S, et al. The Early Pliocene global expansion of C4 grasslands: A new organic carbon-isotopic dataset from the north China plain [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109454. doi: 10.1016/j.palaeo.2019.109454

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2053) PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint