2020 Vol. 40, No. 5
Article Contents

JI Chao, XU Liqiang, ZHANG Yihui, GUO Min, KONG Deming. A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 97-106. doi: 10.16562/j.cnki.0256-1492.2019092502
Citation: JI Chao, XU Liqiang, ZHANG Yihui, GUO Min, KONG Deming. A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 97-106. doi: 10.16562/j.cnki.0256-1492.2019092502

A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea

More Information
  • A 45 cm long sediment core was collected from the upwelling area of the east continental shelf of Hainan Island, South China Sea. Via chronological and geochemical analyses, marine productivity (in terms of Babio) over the past 1 900 years was reconstructed for the study area. The results show that the marine productivity changed significantly over the past 1 900 years, with relatively high productivity during the Medieval Warm Period (MWP), but relatively low productivity during the Little Ice Age (LIA). Marine productivity has increased rapidly over the last century (currently Babio is about 210 μg/g), reaching its highest level over the past 1 900 years. By comparison with the climatic and environmental records, it was found that the marine productivity in the upwelling area was highly affected by the East Asian summer monsoon and also displayed some kind of correlation with temperature. In a warm climate, the intensity of the East Asian summer monsoon enhanced, resulting in an increase in coastal upwelling, which led to increase in marine productivity. Solar activity may also impact on the marine productivity of the upwelling area by affecting climate and intensity of the East Asian monsoon. In the context of global warming, human-induced climate change may impose some effects on marine productivity as well in the study area.

  • 加载中
  • [1] Chassot E, Bonhommeau S, Dulvy N K, et al. Global marine primary production constrains fisheries catches [J]. Ecology Letters, 2010, 13(4): 495-505. doi: 10.1111/j.1461-0248.2010.01443.x

    CrossRef Google Scholar

    [2] Friedland K D, Charles S, Drinkwater K F, et al. Pathways between primary production and fisheries yields of large marine ecosystems [J]. PLoS One, 2012, 7(1): e28945. doi: 10.1371/journal.pone.0028945

    CrossRef Google Scholar

    [3] Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle [J]. Nature, 2008, 451(7176): 293-296. doi: 10.1038/nature06592

    CrossRef Google Scholar

    [4] Keller K M, Joos F, Lehner F, et al. Detecting changes in marine responses to ENSO from 850 to 2100 C. E.: Insights from the ocean carbon cycle [J]. Geophysical Research Letters, 2015, 42(2): 518-525. doi: 10.1002/2014GL062398

    CrossRef Google Scholar

    [5] Pospelova V, Price A M, Pedersen T F. Palynological evidence for late Quaternary climate and marine primary productivity changes along the California margin [J]. Paleoceanography, 2015, 30(7): 877-894. doi: 10.1002/2014PA002728

    CrossRef Google Scholar

    [6] Moore J K, Fu W W, Primeau F, et al. Sustained climate warming drives declining marine biological productivity [J]. Science, 2018, 359(6380): 1139-1143. doi: 10.1126/science.aao6379

    CrossRef Google Scholar

    [7] Wollenburg J E, Knies J, Mackensen A. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3-4): 209-238. doi: 10.1016/S0031-0182(03)00726-0

    CrossRef Google Scholar

    [8] 钮耀诚, 张译元, 杜江辉, 等. 南海西部MIS 3期底栖有孔虫反映的生产力变化[J]. 海洋地质与第四纪地质, 2011, 31(1):85-92

    Google Scholar

    NIU Yaocheng, ZHANG Yiyuan, DU Jianghui, et al. Variations in paleoproductivity recorded by benthic. foraminifera during mis 3 from the western South China Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(1): 85-92.

    Google Scholar

    [9] Bittniok B, Lazarus D B, Diester-Haass L, et al. Radiolarian and sedimentologic paleoproductivity proxy record from the benguela upwelling system, DSDP site 532, 0-6 Ma [J]. Marine Micropaleontology, 2004, 68(3): 223-235.

    Google Scholar

    [10] Eshet Y, Almogi-Labin A. Calcareous nannofossils as paleoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel [J]. Marine Micropaleontology, 1996, 29(1): 37-61. doi: 10.1016/0377-8398(96)00006-0

    CrossRef Google Scholar

    [11] Zhao J T, Li T G, Li J, et al. Paleoproductivity variations in the southern Okinawa Trough since the middle Holocene: Calcareous nannofossil records [J]. Chinese Science Bulletin, 2012, 57(30): 3917-3922. doi: 10.1007/s11434-012-5276-y

    CrossRef Google Scholar

    [12] Wang R J, Li J. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea [J]. Chinese Science Bulletin, 2003, 48(4): 363-367.

    Google Scholar

    [13] Serno S, Winckler G, Anderson R F, et al. Using the natural spatial pattern of marine productivity in the Subarctic North Pacific to evaluate paleoproductivity proxies [J]. Paleoceanography and Paleoclimatology, 2014, 29(5): 438-453.

    Google Scholar

    [14] Dezileau L, Reyss J L, Lemoine F. Late Quaternary changes in biogenic opal fluxes in the Southern Indian Ocean [J]. Marine Geology, 2003, 202(3-4): 143-158. doi: 10.1016/S0025-3227(03)00283-4

    CrossRef Google Scholar

    [15] Hinrichs K U, Schneider R R, Müller P J, et al. A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the Southeast Atlantic Ocean [J]. Organic Geochemistry, 1999, 30(5): 341-366. doi: 10.1016/S0146-6380(99)00007-8

    CrossRef Google Scholar

    [16] Devendra D, Xiang R, Thilakanayaka V, et al. Paleoproductivity changes in the Southern South China Sea from the Last Glacial to the Holocene: Evidence from Stable Isotopes and Total Organic Carbon [J]. International Journal of Geology and Earth Sciences, 2019, 5(2): 1-14.

    Google Scholar

    [17] Zhai L N, Wan S M, Tada R, et al. Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago [J]. Geological Magazine, 2019: 1-11. doi: 10.1017/S0016756819000554

    CrossRef Google Scholar

    [18] Schmitz B. Barium, equatorial high productivity, and the northward wandering of the Indian continent [J]. Paleoceanography and Paleoclimatology, 1987, 2(1): 63-77.

    Google Scholar

    [19] Bridgestock L, Hsieh Y T, Porcelli D, et al. Controls on the barium isotope compositions of marine sediments [J]. Earth and Planetary Science Letters, 2018, 481: 101-110. doi: 10.1016/j.jpgl.2017.10.019

    CrossRef Google Scholar

    [20] 倪建宇, 赵军, 江巧文, 等. 南海北部海域沉积物中生物钡、碳氮同位素的组成特征及其与表层水体初级生产之间的关系[J]. 海洋学报, 2019, 41(2):41-51

    Google Scholar

    Ni J Y, Zhao J, Jiang Q W, et al. Biogenic barium, carbon and nitrogen isotopes features in sediments of the northern South China Sea and their correlation with primary productivity of surface ocean [J]. Acta Oceanologica Sinica, 2019, 41(2): 41-51.

    Google Scholar

    [21] 赵泉鸿, 汪品先. 南海第四纪古海洋学研究进展[J]. 第四纪研究, 1999, 19(6):481-501 doi: 10.3321/j.issn:1001-7410.1999.06.001

    CrossRef Google Scholar

    ZHAO Quanhong, WANG Pinxian. Progress in quaternary paleoceanography of the south China sea: a review [J]. Quaternary Sciences, 1999, 19(6): 481-501. doi: 10.3321/j.issn:1001-7410.1999.06.001

    CrossRef Google Scholar

    [22] Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-237. doi: 10.1016/j.earscirev.2015.08.005

    CrossRef Google Scholar

    [23] Zhou X X, Ding Y H, Wang P X. Moisture transport in the Asian summer monsoon region and its relationship with summer precipitation in China [J]. Journal of Meteorological Research, 2010, 24(1): 31-42.

    Google Scholar

    [24] Huang C, Zeng T, Ye F, et al. Natural and anthropogenic impacts on environmental changes over the past 7500 years based on the multi-proxy study of shelf sediments in the northern South China Sea [J]. Quaternary Science Reviews, 2018, 197: 35-48. doi: 10.1016/j.quascirev.2018.08.005

    CrossRef Google Scholar

    [25] Yuan J H, Luo Y L, Xu Z L, et al. Deep-sea pollen record during 3.0-2.0 Ma B.P. from ODP Site 1143 and its response to global climate changes [J]. Marine Science Bulletin, 2006, 8(1): 1-10.

    Google Scholar

    [26] 黄宝琦, 翦知湣, 林慧玲. 南海东北部晚第四纪古生产力变化[J]. 海洋地质与第四纪地质, 2000, 20(2):65-68

    Google Scholar

    HUANG Baoqi, JIAN Zhimin, LIN Huiling. Late Quaternary changes of paleoproductivity in the northeastern South China Sea [J]. Marine Geology & Quaternary Geology, 2000, 20(2): 65-68.

    Google Scholar

    [27] 梁静之, 黄宝琦, 董轶婷, 等. 南海北部MD12-3432站MIS 11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4):292-300

    Google Scholar

    LIANG Jingzhi, HUANG Baoqi, DONG Yiting, et al. Benthic foraminifera's implications on paleo-environment variability in MD12-3432 in the northern South China Sea since MIS 11 [J]. Earth Science Frontiers, 2016, 23(4): 292-300.

    Google Scholar

    [28] Wang R J, Abelmann A. Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene [J]. Marine Micropaleontology, 2002, 46(1-2): 25-44. doi: 10.1016/S0377-8398(02)00048-8

    CrossRef Google Scholar

    [29] 李建, 王汝建. 南海北部一百万年以来的表层古生产力变化: 来自ODP1144站的蛋白石记录[J]. 地质学报, 2004, 78(2):228-233 doi: 10.3321/j.issn:0001-5717.2004.02.012

    CrossRef Google Scholar

    LI Jian, WANG Rujian. Paleoproductivity variability of the northern South China Sea during the past 1 Ma: The opal record from ODP site 1144 [J]. Acta Geologica Sinica, 2004, 78(2): 228-233. doi: 10.3321/j.issn:0001-5717.2004.02.012

    CrossRef Google Scholar

    [30] Tang Z, Shi X F, Zhang X, et al. Deglacial biogenic opal peaks revealing enhanced Southern Ocean upwelling during the last 513 ka [J]. Quaternary International, 2016, 425: 445-452. doi: 10.1016/j.quaint.2016.09.020

    CrossRef Google Scholar

    [31] 边叶萍, 翦知湣. 南海最近2400年来的古海洋学变化与历史气候资料的比较[J]. 海洋地质与第四纪地质, 2005, 25(4):73-78

    Google Scholar

    BIAN Yeping, JIAN Zhimin. Paleoceanographic changes in the South China Sea over the Last 2 400 Years and Their comparison with the historical paleoclimatical records [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 73-78.

    Google Scholar

    [32] 李丽, 王慧, 汪品先. 南海北部17937岩心四万年来古环境变化的分子有机地球化学记录[J]. 地球科学—中国地质大学学报, 2008, 33(6):793-799 doi: 10.3799/dqkx.2008.095

    CrossRef Google Scholar

    LI Li, WANG Hui, WANG Pinxian. Molecular organic geochemical record of paleoenvironmental changes of core 17937 in northern South China Sea since 40 ka [J]. Earth Science—Journal of China University of Geosciences, 2008, 33(6): 793-799. doi: 10.3799/dqkx.2008.095

    CrossRef Google Scholar

    [33] Li Y F, Peng S Q, Yang W, et al. Numerical simulation of the structure and variation of upwelling off the east coast of Hainan Island using QuikSCAT winds [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(6): 1068-1081. doi: 10.1007/s00343-012-1275-8

    CrossRef Google Scholar

    [34] Hu J Y, Liang X S, Lin H Y. Coastal upwelling off the China coasts[M]//Coastal Environment, Disaster, and Infrastructure-A Case Study of China's Coastline. BoD–Books on Demand, 2018. DOI: 10.5772/intechopen.80738.

    Google Scholar

    [35] Song X Y, Lai Z G, Ji R B, et al. Summertime primary production in northwest South China Sea: Interaction of coastal eddy, upwelling and biological processes [J]. Continental Shelf Research, 2012, 48: 110-121. doi: 10.1016/j.csr.2012.07.016

    CrossRef Google Scholar

    [36] Zhou L B, Huang L M, Tan Y H, et al. Size-based analysis of a zooplankton community under the influence of the Pearl River plume and coastal upwelling in the northeastern South China Sea [J]. Marine Biology Research, 2015, 11(2): 168-179. doi: 10.1080/17451000.2014.904882

    CrossRef Google Scholar

    [37] Snyder M A, Sloan L C, Diffenbaugh N C, et al. Future climate change and upwelling in the California Current [J]. Geophysical Research Letters, 2003, 30(15): 1823. doi: 10.1029/2003GL017647

    CrossRef Google Scholar

    [38] Jing Z Y, Qi Y Q, Du Y. Upwelling in the continental shelf of northern South China Sea associated with 1997-1998 El Nino [J]. Journal of Geophysical Research: Oceans, 2011: 116. doi: 10.1029/2010JC006598

    CrossRef Google Scholar

    [39] Sydeman W J, García-Reyes M, Schoeman D S, et al. Climate change and wind intensification in coastal upwelling ecosystems [J]. Science, 2014, 345(6192): 77-80. doi: 10.1126/science.1251635

    CrossRef Google Scholar

    [40] 吴日升, 李立. 南海上升流研究概述[J]. 台湾海峡, 2003, 22(2):269-277

    Google Scholar

    WU Risheng, LI Li. Summarization of study on upwelling system in the South China Sea [J]. Journal of Oceanography in Taiwan Strait, 2003, 22(2): 269-277.

    Google Scholar

    [41] 郭飞, 侍茂崇, 夏综万. 琼东沿岸上升流二维数值模型的诊断计算[J]. 海洋学报, 1998, 20(6):109-116

    Google Scholar

    GUO Fei, SHI Maochong, XIA Zongwan. Two-demension diagnose model to calculate upwelling on offshore of the east coast of Hainan Island [J]. Acta Oceanologica Sinica, 1998, 20(6): 109-116.

    Google Scholar

    [42] Goodkin N F, Switzer A D, McCorry D L, et al. Coral communities of Hong Kong: Long-lived corals in a marginal reef environment [J]. Marine Ecology Progress, 2011, 426: 185-196. doi: 10.3354/meps09019

    CrossRef Google Scholar

    [43] Dymond J, Collier R, McManus J, et al. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans? [J]. Paleoceanography and Paleoclimatology, 1997, 12(4): 586-593.

    Google Scholar

    [44] James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron: the role of sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3111-3122. doi: 10.1016/S0016-7037(00)00418-X

    CrossRef Google Scholar

    [45] 沈俊, 施张燕, 冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报, 2011, 30(2):69-77 doi: 10.3969/j.issn.1000-7849.2011.02.012

    CrossRef Google Scholar

    SHEN Jun, SHI Zhangyan, FENG Qinglai. Review on geochemical proxies in paleo-productivity studies [J]. Geological Science and Technology Information, 2011, 30(2): 69-77. doi: 10.3969/j.issn.1000-7849.2011.02.012

    CrossRef Google Scholar

    [46] Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 287-302. doi: 10.1016/j.palaeo.2005.06.026

    CrossRef Google Scholar

    [47] Dymond J, Suess E, Lyle M. Barium in Deep-Sea sediment: a geochemical proxy for paleoproductivity [J]. Paleoceanography and Paleoclimatology, 1992, 7(2): 163-181.

    Google Scholar

    [48] 田正隆, 陈绍勇, 龙爱民. 以Ba为指标反演海洋古生产力的研究进展[J]. 热带海洋学报, 2004, 23(3):78-86 doi: 10.3969/j.issn.1009-5470.2004.03.012

    CrossRef Google Scholar

    TIAN Zhenglong, CHEN Shaoyong, LONG Aimin. A review on barium as a geochemical proxy to reconstruct paleoproductivity [J]. Journal of Tropical Oceanography, 2004, 23(3): 78-86. doi: 10.3969/j.issn.1009-5470.2004.03.012

    CrossRef Google Scholar

    [49] 韦恒叶. 古海洋生产力与氧化还原指标——元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2):76-88 doi: 10.3969/j.issn.1009-3850.2012.02.012

    CrossRef Google Scholar

    WEI Yeheng. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry [J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88. doi: 10.3969/j.issn.1009-3850.2012.02.012

    CrossRef Google Scholar

    [50] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3):402-410 doi: 10.3321/j.issn:1001-8166.2002.03.017

    CrossRef Google Scholar

    CHEN Jianfang. New geochemical proxies in paleoc-eanography studies [J]. Advance in Earth Sciences, 2002, 17(3): 402-410. doi: 10.3321/j.issn:1001-8166.2002.03.017

    CrossRef Google Scholar

    [51] Pirrung M, Illner P, Matthiessen J. Biogenic barium in surface sediments of the European Nordic Seas [J]. Marine Geology, 2008, 250(1-2): 89-103. doi: 10.1016/j.margeo.2008.01.001

    CrossRef Google Scholar

    [52] Elderfield H. Tracers of ocean paleoproductivity and paleochemistry: An introduction [J]. Paleoceanography and Paleoclimatology, 1990, 5(5): 711-717.

    Google Scholar

    [53] Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction [J]. Global Biogeochemical Cycles, 1995, 9(2): 289-303. doi: 10.1029/95GB00021

    CrossRef Google Scholar

    [54] 邹亮, 韦刚健, 李军. 海洋沉积物中生物成因Ba的海洋生产力研究[J]. 第四纪研究, 2011, 31(2):307-315 doi: 10.3969/j.issn.1001-7410.2011.02.13

    CrossRef Google Scholar

    ZOU Liang, WEI Gangjian, LI Jun. Review on ocean productivity by using biogenic Ba in marine sediments [J]. Quaternary Sciences, 2011, 31(2): 307-315. doi: 10.3969/j.issn.1001-7410.2011.02.13

    CrossRef Google Scholar

    [55] Riethdorf J R, Nürnberg D, Max L, et al. Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr [J]. Climate of the Past, 2013, 9(3): 1345-1373. doi: 10.5194/cp-9-1345-2013

    CrossRef Google Scholar

    [56] Frank M, Gersonde R, Van Der Loeff M R, et al. Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric CO2 [J]. Paleoceanography and Paleoclimatology, 2000, 15(6): 642-658.

    Google Scholar

    [57] Bonn W J, Gingele F X, Grobe H, et al. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3-4): 195-211. doi: 10.1016/S0031-0182(97)00144-2

    CrossRef Google Scholar

    [58] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. doi: 10.1016/0016-7037(96)00236-0

    CrossRef Google Scholar

    [59] 韦刚健, 刘颖, 李献华, 等. 南海沉积物中过剩铝问题的探讨[J]. 矿物岩石地球化学通报, 2003, 22(1):23-25 doi: 10.3969/j.issn.1007-2802.2003.01.005

    CrossRef Google Scholar

    WEI Gangjian, LIU Ying, LI Xianhua, et al. Excess al in the sediments from South China Sea [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1): 23-25. doi: 10.3969/j.issn.1007-2802.2003.01.005

    CrossRef Google Scholar

    [60] Taylor S R, McLennan S M. The continental crust: its composition and evolution[M]. United States: Blackwell Scientific Publishing, 1985.

    Google Scholar

    [61] Klump J, Hebbeln D, Wefer G. The impact of sediment provenance on barium-based productivity estimates [J]. Marine Geology, 2000, 169(3-4): 259-271. doi: 10.1016/S0025-3227(00)00092-X

    CrossRef Google Scholar

    [62] Goldberg E L, Gorbarenko S A, Shaporenko A D, et al. Instability of last glacial climate from SRXFA data for bottom sediments in the Okhotsk Sea [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 543(1): 284-287. doi: 10.1016/j.nima.2005.01.242

    CrossRef Google Scholar

    [63] 张富元, 张霄宇, 杨群慧, 等. 南海东部海域的沉积作用和物质来源研究[J]. 海洋学报, 2005, 27(2):79-90

    Google Scholar

    ZHANG Fuyuan, ZHANG Xiaoyu, YANG Hui Qunhui, et al. Research on sedimentations and material sources in the eastern South China Sea [J]. Acta Oceanologica Sinica, 2005, 27(2): 79-90.

    Google Scholar

    [64] Woods A M, Lloyd J M, Zong Y Q, et al. Spatial mapping of Pearl River Estuary surface sediment geochemistry: influence of data analysis on environmental interpretation [J]. Estuarine, Coastal and Shelf Science, 2012, 115: 218-233. doi: 10.1016/j.ecss.2012.09.005

    CrossRef Google Scholar

    [65] 青子琪, 刘连文, 郑洪波. 越南岸外夏季上升流区22万年来东亚季风的沉积与地球化学记录[J]. 海洋地质与第四纪地质, 2005, 25(2):67-72

    Google Scholar

    QING Ziqi, LIU Lianwen, ZHENG Hongbo. Sedimentological and geochemical records of east asian monsoon in summer upwelling region off the coast of vietnam for the past 220 000 years [J]. Marine Geology & Quaternary Geology, 2005, 25(2): 67-72.

    Google Scholar

    [66] 谢玲玲, 张书文, 赵辉. 琼东上升流研究概述[J]. 热带海洋学报, 2012, 31(4):35-41

    Google Scholar

    XIE Lingling, ZHANG Shuwen, ZHAO Hui. Overview of studies on Qiongdong upwelling [J]. Journal of Tropical Oceanography, 2012, 31(4): 35-41.

    Google Scholar

    [67] 刘羿, 彭子成, 韦刚健, 等. 南海北部夏季沿岸上升流近百年的强度变化[J]. 地球化学, 2009, 38(4):317-322 doi: 10.3321/j.issn:0379-1726.2009.04.001

    CrossRef Google Scholar

    LIU Yi, PENG Zicheng, WEI Gangjian, et al. Variation of summer coastal upwelling at northern South China Sea during the last 100 years [J]. Geochimica, 2009, 38(4): 317-322. doi: 10.3321/j.issn:0379-1726.2009.04.001

    CrossRef Google Scholar

    [68] Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 221-232. doi: 10.1016/j.jpgl.2007.10.015

    CrossRef Google Scholar

    [69] Tierney J E, Oppo D W, Rosenthal Y, et al. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia [J]. Paleoceanography and Paleoclimatology, 2010, 25(1): PA1102. doi: 10.1029/2009pa001871

    CrossRef Google Scholar

    [70] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    CrossRef Google Scholar

    [71] Yang B, Braeuning A, Johnson K R, et al. General characteristics of temperature variation in China during the last two millennia [J]. Geophysical Research Letters, 2002, 29(9): 38-1-38-4.

    Google Scholar

    [72] Neukom R, Steiger N, Gómez-Navarro J J, et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era [J]. Nature, 2019, 571(7766): 550-554. doi: 10.1038/s41586-019-1401-2

    CrossRef Google Scholar

    [73] Jickells T D. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005, 308(5718): 67-71. doi: 10.1126/science.1105959

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2744) PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint