2020 Vol. 40, No. 5
Article Contents

LI Xuelin, ZHANG Hanyu, LIU Gang, HAN Xiaohui, QIN Yongpeng, WU Shiguo. Seismic sequence and evolution model of isolated carbonate platform—A case from Yongle Atoll, Xisha Islands[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 87-96. doi: 10.16562/j.cnki.0256-1492.2019111901
Citation: LI Xuelin, ZHANG Hanyu, LIU Gang, HAN Xiaohui, QIN Yongpeng, WU Shiguo. Seismic sequence and evolution model of isolated carbonate platform—A case from Yongle Atoll, Xisha Islands[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 87-96. doi: 10.16562/j.cnki.0256-1492.2019111901

Seismic sequence and evolution model of isolated carbonate platform—A case from Yongle Atoll, Xisha Islands

More Information
  • The Yongle Atoll is a typical modern isolated carbonate platform, which has recorded a complete evolutionary history of biological reefs and carbonate platforms in the Xisha Area. Based on the newly acquired high-resolution multi-channel seismic data, combined with the research results of Well CK-2 in the Yongle Atoll and Well XK-1in the east of Yongle Atoll, the sequence stratigraphy of the Yongle Atoll is studied, the evolution of the Atoll discussed, and the evolutionary model for the Xisha isolated carbonate platform established. Based on the change in seismic reflection isophase characteristics, five sequences, i.e. Sq1 (Lower Miocene), Sq2 (Middle Miocene), Sq3 (Upper Miocene), Sq4 (Pliocene), and Sq5 (Quaternary) were divided from the bottom up, And the chronostratigraphic framework of the Yongle Atoll was established upon the basis. The depositional environment of the platform dominated by lagoons has been relatively stable since Miocene. The platform slope used to be a neritic environment in Early Miocene where biological reefs well developed. It has been a bathyal sedimentary environment since Miocene up to the present. Gravity flow deposits originated from the top of the platform, as Quaternary contour current deposits are also observed on the western slope of the platform. The development and evolution of the isolated carbonate platform in the Xisha may be divided into four stages: initiation in Early Miocene, large-scale carbonate platform growth in Middle Miocene, drowning period in Late Miocene-Pleistocene, and an atoll at present. This study makes up the shortcomings of previous studies on the development and evolution of isolated carbonate platforms in the Xisha Islands.

  • 加载中
  • [1] Vail P R, Colin J P, Duchene R J, et al. Sequence stratigraphy and its application to the chronostratigraphic correlation of the paris basin jurassic [J]. Bulletin Societe Geologique France, 1987, 3(7): 1301-1330.

    Google Scholar

    [2] Posamentier H W, Vail P R. Eustatic controls on clastic deposition II-Sequence and systems tract models[M]//Sea-Level Changes: An Integrated Approach.Tulsa, Okla: SEPM, 1988: 125-154.

    Google Scholar

    [3] Betzler C, Hübscher C, Lindhorst S, et al. Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean) [J]. Geology, 2009, 37(10): 867-870. doi: 10.1130/G25702A.1

    CrossRef Google Scholar

    [4] Eberli G P, Ginsburg R N. Comment and reply on “Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank”: Reply [J]. Geology, 1987, 15(11): 1082.

    Google Scholar

    [5] Schlager W, Warrlich G. Record of sea-level fall in tropical carbonates [J]. Basin Research, 2009, 21(2): 209-224. doi: 10.1111/j.1365-2117.2008.00383.x

    CrossRef Google Scholar

    [6] Wilson M E J. Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development [J]. Sedimentary Geology, 2002, 147(3-4): 295-428. doi: 10.1016/S0037-0738(01)00228-7

    CrossRef Google Scholar

    [7] Wilson M E J. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(3-4): 262-274. doi: 10.1016/j.palaeo.2008.05.012

    CrossRef Google Scholar

    [8] Fournier F, Montaggioni L, Borgomano J. Paleoenvironments and high-frequency cyclicity from Cenozoic South-East Asian shallow-water carbonates: a case study from the Oligo-Miocene buildups of Malampaya (Offshore Palawan, Philippines) [J]. Marine and Petroleum Geology, 2004, 21(1): 1-21. doi: 10.1016/j.marpetgeo.2003.11.012

    CrossRef Google Scholar

    [9] Webster J M, Wallace L, Silver E, et al. Drowned carbonate platforms in the Huon Gulf, Papua New Guinea [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(11): Q11008.

    Google Scholar

    [10] Rankey E C. Seismic architecture and seismic geomorphology of heterozoan carbonates: Eocene-Oligocene, Browse Basin, Northwest Shelf, Australia [J]. Marine and Petroleum Geology, 2017, 82: 424-443. doi: 10.1016/j.marpetgeo.2017.02.011

    CrossRef Google Scholar

    [11] Principaud M, Ponte J P, Mulder T, et al. Slope-to-basin stratigraphic evolution of the northwestern Great Bahama Bank (Bahamas) during the Neogene to Quaternary: interactions between downslope and bottom currents deposits [J]. Basin Research, 2017, 29(6): 699-724. doi: 10.1111/bre.12195

    CrossRef Google Scholar

    [12] Fan T L, Yu K F, Zhao J X, et al. Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea [J]. GSA Bulletin, 2020, 132(3-4): 803-816. doi: 10.1130/B35088.1

    CrossRef Google Scholar

    [13] Jiang W, Yu K F, Fan T L, et al. Coral reef carbonate record of the Pliocene-Pleistocene climate transition from an atoll in the South China Sea [J]. Marine Geology, 2019, 411: 88-97. doi: 10.1016/j.margeo.2019.02.006

    CrossRef Google Scholar

    [14] Wang R, Jones B, Yu K F. Island dolostones: Genesis by time-transgressive or event dolomitization [J]. Sedimentary Geology, 2019, 390: 15-30. doi: 10.1016/j.sedgeo.2019.07.002

    CrossRef Google Scholar

    [15] Wang R, Yu K F, Jones B, et al. Evolution and development of Miocene “island dolostones” on Xisha Islands, South China Sea [J]. Marine Geology, 2018, 406: 142-158. doi: 10.1016/j.margeo.2018.09.006

    CrossRef Google Scholar

    [16] Zhang Y, Yu K F, Qian H D, et al. The basement and volcanic activities of the Xisha Islands: Evidence from the kilometre-scale drilling in the northwestern South China Sea [J]. Geological Journal, 2020, 55: 571-583. doi: 10.1002/gj.3416

    CrossRef Google Scholar

    [17] 罗威, 张道军, 刘新宇, 等. 西沙地区西科1井综合地层学研究[J]. 地层学杂志, 2018, 42(4):485-498

    Google Scholar

    LUO Wei, ZHANG Daojun, LIU Xinyu, et al. A comprehensive stratigraphic study of Well XK-1 in the Xisha area [J]. Journal of Stratigraphy, 2018, 42(4): 485-498.

    Google Scholar

    [18] 张功成. 南海北部陆坡深水区构造演化及其特征[J]. 石油学报, 2010, 31(4):528-533, 541 doi: 10.7623/syxb201004002

    CrossRef Google Scholar

    ZHANG Gongcheng. Tectonic evolution of deepwater area of northern continental margin in South China Sea [J]. Acta Petrolei Sinica, 2010, 31(4): 528-533, 541. doi: 10.7623/syxb201004002

    CrossRef Google Scholar

    [19] Qiu X L, Ye S Y, Wu S M, et al. Crustal structure across the xisha trough, northwestern South China Sea [J]. Tectonophysics, 2001, 341(1-4): 179-193. doi: 10.1016/S0040-1951(01)00222-0

    CrossRef Google Scholar

    [20] 朱伟林, 谢习农, 王振峰, 等. 南海西沙隆起基底成因新认识[J]. 中国科学: 地球科学, 2017, 47(12):1460-1468 doi: 10.1360/N072017-00011

    CrossRef Google Scholar

    ZHU Weilin, XIE Xinong, WANG Zhenfeng, et al. New insights on the origin of the basement of the Xisha uplift, South China Sea [J]. Scientia Sinica Terrae, 2017, 47(12): 1460-1468. doi: 10.1360/N072017-00011

    CrossRef Google Scholar

    [21] Li C F, Li J B, Ding W W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics [J]. Journal of Geophysical Research-Solid Earth, 2015, 120(3): 1377-1399. doi: 10.1002/2014JB011686

    CrossRef Google Scholar

    [22] 吴时国, 张新元. 南海共轭陆缘新生代碳酸盐台地对海盆构造演化的响应[J]. 地球科学—中国地质大学学报, 2015, 40(2):234-248 doi: 10.3799/dqkx.2015.017

    CrossRef Google Scholar

    WU Shiguo, ZHANG Xinyuan. Response of cenozoic carbonate platform on tectonic evolution in the conjugated margin of South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2015, 40(2): 234-248. doi: 10.3799/dqkx.2015.017

    CrossRef Google Scholar

    [23] 马玉波, 吴时国, 杜晓慧, 等. 西沙碳酸盐岩建隆发育模式及其主控因素[J]. 海洋地质与第四纪地质, 2011, 31(4):59-67

    Google Scholar

    MA Yubo, WU Shiguo, DU Xiaohui, et al. Evolutionary model and control factors of Xisha carbonate buildup [J]. Marine Geology & Qaternary Geology, 2011, 31(4): 59-67.

    Google Scholar

    [24] Wu S G, Yang Z, Wang D W, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 350: 71-83. doi: 10.1016/j.margeo.2013.12.016

    CrossRef Google Scholar

    [25] 杨振, 张光学, 张莉, 等. 西沙海域中新世碳酸盐台地的时空分布及其油气成藏模式[J]. 地质学报, 2017, 91(6):1360-1373 doi: 10.3969/j.issn.0001-5717.2017.06.014

    CrossRef Google Scholar

    YANG Zhen, ZHANG Guangxue, ZHANG Li, et al. The spatial-temporal distribution of miocene carbonate platform in the Xisha sea area and its model of hydrocarbon accumulation [J]. Acta Geologica Sinica, 2017, 91(6): 1360-1373. doi: 10.3969/j.issn.0001-5717.2017.06.014

    CrossRef Google Scholar

    [26] Shao L, Li Q Y, Zhu W L, et al. Neogene carbonate platform development in the NW South China Sea: Litho-, bio- and chemo-stratigraphic evidence [J]. Marine Geology, 2017, 385: 233-243. doi: 10.1016/j.margeo.2017.01.009

    CrossRef Google Scholar

    [27] Ma Y B, Wu S G, Lv F L, et al. Seismic characteristics and development of the Xisha carbonate platforms, northern margin of the South China Sea [J]. Journal of Asian Earth Sciences, 2011, 40(3): 770-783. doi: 10.1016/j.jseaes.2010.11.003

    CrossRef Google Scholar

    [28] 张汉羽, 吴时国, 韩孝辉, 等. 岛礁地震资料特征分析及处理流程——以西沙永乐环礁为例[J]. 海洋地质与第四纪地质, 2018, 38(6):172-184

    Google Scholar

    ZHANG Hanyu, WU Shiguo, HAN Xiaohui, et al. Characteristics of seismic data and its processing procedures in the areas of Reef Islands—a case from Yongle Atoll of Xisha Islands [J]. Marine Geology & Qaternary Geology, 2018, 38(6): 172-184.

    Google Scholar

    [29] 刘刚, 何其江, 李亮, 等. 西沙群岛永乐环礁瀉湖沉积速率及地球化学特征[J]. 海洋地质与第四纪地质, 2018, 38(6):69-77

    Google Scholar

    LIU Gang, HE Qijiang, LI Liang, et al. Sedimentation rate and geochemical characters of the lagoonal deposits in the Yongle Atoll, Xisha Islands [J]. Marine Geology & Qaternary Geology, 2018, 38(6): 69-77.

    Google Scholar

    [30] Shao L, Cui Y C, Qiao P J, et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 504-516. doi: 10.1016/j.palaeo.2017.07.006

    CrossRef Google Scholar

    [31] Betzler C, Fürstenau J, Lüdmann T, et al. Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean [J]. Basin Research, 2013, 25(2): 172-196. doi: 10.1111/j.1365-2117.2012.00554.x

    CrossRef Google Scholar

    [32] 王子兰, 王仕俭, 李素闪, 等. GeoEast处理解释一体化应用[J]. 天然气工业, 2007, 27(S1):222-224

    Google Scholar

    WANG Zilan, WANG Shijian, LI Sushan, et al. GeoEast processing and interpretation of integrated applications [J]. Natural Gas Industry, 2007, 27(S1): 222-224.

    Google Scholar

    [33] Fontaine J M, Cussey R, Lacaze J, et al. Seismic interpretation of carbonate depositional environments [J]. AAPG Bulletin, 1987, 71(3): 281-297.

    Google Scholar

    [34] Paumard V, Zuckmeyer E, Boichard R, et al. Evolution of Late Oligocene-Early Miocene attached and isolated carbonate platforms in a volcanic ridge context (Maldives type), Yadana field, offshore Myanmar [J]. Marine and Petroleum Geology, 2017, 81: 361-387. doi: 10.1016/j.marpetgeo.2016.12.012

    CrossRef Google Scholar

    [35] Shahzad K, Betzker C, Ahmed N, et al. Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling factors [J]. International Journal of Earth Sciences, 2018, 107(2): 481-504. doi: 10.1007/s00531-017-1504-7

    CrossRef Google Scholar

    [36] Shahzad K, Betzker C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (Offshore Indus Basin) [J]. Marine and Petroleum Geology, 2019, 101: 519-539. doi: 10.1016/j.marpetgeo.2018.12.025

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(1852) PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint