2019 Vol. 39, No. 5
Article Contents

WANG Yidan, YU Fusheng, LIU Zhina, WANG Yuheng, WANG Yiqun. Two-dimensional discrete element simulation of plate subduction deformation process: An insight into the genesis of East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 163-173. doi: 10.16562/j.cnki.0256-1492.2019070306
Citation: WANG Yidan, YU Fusheng, LIU Zhina, WANG Yuheng, WANG Yiqun. Two-dimensional discrete element simulation of plate subduction deformation process: An insight into the genesis of East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 163-173. doi: 10.16562/j.cnki.0256-1492.2019070306

Two-dimensional discrete element simulation of plate subduction deformation process: An insight into the genesis of East China Sea Shelf Basin

More Information
  • Subduction deformation is a tectonic phenomenon in the process of plates convergence, which remains a hot topic. The East China Sea Shelf Basin is located in the south-eastern border of the Eurasian plate, whose tectonic evolution and dynamic mechanism are related to the subduction of the Philippine plate and the Pacific plate beneath the Eurasian plate. At present, the research on the subduction deformation is still not so perfect, and the influence of subduction angle changes on the deformation process needs further study. The authors, in this paper, tried to use the method of discrete element simulation, a kind of emerging method in the field of tectonics, to simulate the evolution process of plate subduction deformation. By constructing discrete element models and comparing the experimental results with the strata in the subduction zone between the Philippine plate and the East China Sea, the research shows that (1) The subduction deformation characteristics are related to the subduction angle. Different subduction angles result in different deformation patterns. (2) The number of faults and the horizontal offsets of faults increase as the subduction angle decreases. Fault displacement at the same position under different subduction angles is different. (3) The height of the subduction wedge and deformation degree increases as the subduction angle decreases. And the shape of subduction wedge is different. (4) Back-thrusts form later as the subduction angle decreases. (5) Experimental simulation results have similar structural characteristics with instance. The experimental simulation results may explain the evolution process of plate subduction deformation under different subduction angles, which is helpful to further understand the subduction deformation during plates convergence process.

  • 加载中
  • [1] Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems[C]//Proceedings of International Proceedings Symposium on Rock Fracture. Nancy, France, 1971: 128-132.

    Google Scholar

    [2] 蔡申阳, 尹宏伟, 李长圣, 等. 基于离散元数值模拟的应变分析和裂缝预测技术[J]. 高校地质学报, 2016, 22(1):183-193

    Google Scholar

    CAI Shenyang, YIN Hongwei, LI Changsheng, et al. Technology of strain analysis and fracture prediction based on DEM numerical simulation [J]. Geological Journal of China Universities, 2016, 22(1): 183-193.

    Google Scholar

    [3] Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method [J]. Powder Technology, 2000, 109(1-3): 192-205. doi: 10.1016/S0032-5910(99)00236-3

    CrossRef Google Scholar

    [4] Strayer L M, Suppe J. Out-of-plane motion of a thrust sheet during along-strike propagation of a thrust ramp: a distinct-element approach [J]. Journal of Structural Geology, 2002, 24(4): 637-650. doi: 10.1016/S0191-8141(01)00115-8

    CrossRef Google Scholar

    [5] Finch E, Hardy S, Gawthorpe R. Discrete element modelling of contractional fault-propagation folding above rigid basement fault blocks [J]. Journal of Structural Geology, 2003, 25(4): 515-528. doi: 10.1016/S0191-8141(02)00053-6

    CrossRef Google Scholar

    [6] Strayer L M, Erickson S G, Suppe J. Influence of Growth Strata on the Evolution of Fault-Related Folds—Distinct-Element Models[M]//McClay K R. Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, 2004: 413-437.

    Google Scholar

    [7] Hardy S, Finch E. Discrete-element modelling of detachment folding [J]. Basin Research, 2005, 17(4): 507-520. doi: 10.1111/j.1365-2117.2005.00280.x

    CrossRef Google Scholar

    [8] González G, Gerbault M, Martinod J, et al. Crack formation on top of propagating reverse faults of the Chuculay Fault System, northern Chile: insights from field data and numerical modelling [J]. Journal of Structural Geology, 2008, 30(6): 791-808. doi: 10.1016/j.jsg.2008.02.008

    CrossRef Google Scholar

    [9] 张洁, 尹宏伟, 徐士进. 用离散元方法讨论岩石强度对主动底辟盐构造断层分布模式的影响[J]. 南京大学学报: 自然科学, 2008, 44(6):642-652

    Google Scholar

    ZHANG Jie, YIN Hongwei, XU Shijin. Influence of rock strength on fault patterns above active salt domes: insights from 2D discrete element simulations [J]. Journal of Nanjing University: Natural Sciences, 2008, 44(6): 642-652.

    Google Scholar

    [10] Abe S, Van Gent H, Urai J L. DEM simulation of normal faults in cohesive materials [J]. Tectonophysics, 2011, 512(1-4): 12-21. doi: 10.1016/j.tecto.2011.09.008

    CrossRef Google Scholar

    [11] Egholm D L, Sandiford M, Clausen O R, et al. A new strategy for discrete element numerical models: 2. Sandbox applications [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05204.

    Google Scholar

    [12] Hardy S. The Devil truly is in the detail. A cautionary note on computational determinism: Implications for structural geology numerical codes and interpretation of their results [J]. Interpretation, 2015, 3(4): SAA29-SAA35. doi: 10.1190/INT-2015-0052.1

    CrossRef Google Scholar

    [13] Botter C, Cardozo N, Hardy S, et al. Seismic characterisation of fault damage in 3D using mechanical and seismic modelling [J]. Marine and Petroleum Geology, 2016, 77: 973-990. doi: 10.1016/j.marpetgeo.2016.08.002

    CrossRef Google Scholar

    [14] De Franco R, Govers R, Wortel R. Nature of the plate contact and subduction zones diversity [J]. Earth and Planetary Science Letters, 2008, 271(1-4): 245-253. doi: 10.1016/j.jpgl.2008.04.019

    CrossRef Google Scholar

    [15] Lallemand S, Heuret A, Boutelier D. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(9).

    Google Scholar

    [16] Billen M I, Hirth G. Rheologic controls on slab dynamics [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(8): Q08012.

    Google Scholar

    [17] Hardy S, McClay K, Muñoz J A. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges [J]. Marine and Petroleum Geology, 2009, 26(2): 232-248. doi: 10.1016/j.marpetgeo.2007.12.003

    CrossRef Google Scholar

    [18] Burbidge D R, Braun J. Numerical models of the evolution of accretionary wedges and fold-and-thrust belts using the distinct-element method [J]. Geophysical Journal International, 2002, 148(3): 542-561. doi: 10.1046/j.1365-246x.2002.01579.x

    CrossRef Google Scholar

    [19] Naylor M, Sinclair H D, Willett S, et al. A discrete element model for orogenesis and accretionary wedge growth [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B12): B12403. doi: 10.1029/2003JB002940

    CrossRef Google Scholar

    [20] Egholm D L. A new strategy for discrete element numerical models: 1. Theory [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05203.

    Google Scholar

    [21] Liu Z N, Koyi H A. The impact of a weak horizon on kinematics and internal deformation of a failure mass using discrete element method [J]. Tectonophysics, 2013, 586: 95-111. doi: 10.1016/j.tecto.2012.11.009

    CrossRef Google Scholar

    [22] Okamura Y, Nishizawa A, Oikawa M, et al. Differential subsidence of the forearc wedge of the Ryukyu (Nansei-Shoto) Arc caused by subduction of ridges on the Philippine Sea Plate [J]. Tectonophysics, 2017, 717: 399-412. doi: 10.1016/j.tecto.2017.08.025

    CrossRef Google Scholar

    [23] Nishizawa A, Kaneda K, Oikawa M, et al. Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate [J]. Earth, Planets and Space, 2017, 69(1): 86. doi: 10.1186/s40623-017-0674-7

    CrossRef Google Scholar

    [24] Lallemand S, Heuret A, Boutelier D. On the relationships between slab dip, back‐arc stress, upper plate absolute motion, and crustal nature in subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2015, 6(9): Q09006.

    Google Scholar

    [25] Skinner S M, Clayton R W. An evaluation of proposed mechanisms of slab flattening in central Mexico [J]. Pure and Applied Geophysics, 2011, 168(8-9): 1461-1474. doi: 10.1007/s00024-010-0200-3

    CrossRef Google Scholar

    [26] 皇甫鹏鹏, 王岳军, 范蔚茗, 等. 大洋平板俯冲的数值模拟再现: 洋–陆汇聚速率影响[J]. 大地构造与成矿学, 2016, 40(3):429-445

    Google Scholar

    HUANGFU Pengpeng, WANG Yuejun, FAN Weiming, et al. Numerical modeling of flat subduction: constraints from the ocean-continent convergence velocity [J]. Geotectonica et Metallogenia, 2016, 40(3): 429-445.

    Google Scholar

    [27] Yang C Q, Yang Y Q, Li G, et al. The Mesozoic basin-mountain coupling process of the southern East China Sea shelf basin and its adjacent land area [J]. Acta Geologica Sinica - English Edition, 2016, 90(3): 1051-1052. doi: 10.1111/1755-6724.12748

    CrossRef Google Scholar

    [28] 侯方辉, 张训华, 李刚, 等. 从被动陆缘到主动陆缘——东海陆架盆地中生代构造体制转换的盆地记录[J]. 石油地球物理勘探, 2015, 50(5):980-990

    Google Scholar

    HOU Fanghui, ZHANG Xunhua, LI Gang, et al. From passive continental margin to active continental margin: basin recordings of Mesozoic tectonic regime transition of the East China Sea Shelf Basin [J]. Oil Geophysical Prospecting, 2015, 50(5): 980-990.

    Google Scholar

    [29] Shang L N, Zhang X H, Jia Y G, et al. Late Cenozoic evolution of the East China continental margin: Insights from seismic, gravity, and magnetic analyses [J]. Tectonophysics, 2017, 698: 1-15. doi: 10.1016/j.tecto.2017.01.003

    CrossRef Google Scholar

    [30] 杨长清, 杨传胜, 李刚, 等. 东海陆架盆地南部中生代构造演化与原型盆地性质[J]. 海洋地质与第四纪地质, 2012, 32(3):105-111

    Google Scholar

    YANG Changqing, YANG Chuansheng, LI Gang, et al. Mesozoic tectonic evolution and prototype basin characters in the southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 105-111.

    Google Scholar

    [31] 崔幸, 王亮亮, 罗洪明, 等. 东海陆架盆地南部中生代盆地性质与演化: 砂箱物理模拟检验[J]. 海洋地质与第四纪地质, 2017, 37(4):181-192

    Google Scholar

    CUI Xing, WANG Liangliang, LUO Hongming, et al. Sandbox modeling test for Mesozoic basins in southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 181-192.

    Google Scholar

    [32] Cui X, Dai L M, Li S D, et al. Control of strike‐slip and pull‐apart processes to tectonic transition of the southern East China Sea Shelf Basin [J]. Geological Journal, 2019, 54(2): 850-561. doi: 10.1002/gj.3363

    CrossRef Google Scholar

    [33] Liu Z, Dai L M, Li S Z, et al. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: thermo‐mechanical modelling [J]. Geological Journal, 2018, 53(S1): 240-251.

    Google Scholar

    [34] Hu M Y, Li S Z, Dai L M, et al. Dynamic mechanism of tectonic inversion and implications for oil–gas accumulation in the Xihu Sag, East China Sea Shelf basin: insights from numerical modelling [J]. Geological Journal, 2018, 53(S1): 225-239.

    Google Scholar

    [35] Abedi M, Bahroudi A. A geophysical potential field study to image the Makran subduction zone in SE of Iran [J]. Tectonophysics, 2016, 688: 119-134. doi: 10.1016/j.tecto.2016.09.025

    CrossRef Google Scholar

    [36] Kopp C, Fruehn J, Flueh E R, et al. Structure of the makran subduction zone from wide-angle and reflection seismic data [J]. Tectonophysics, 2000, 329(1-4): 171-191. doi: 10.1016/S0040-1951(00)00195-5

    CrossRef Google Scholar

    [37] Grando G, McClay K. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran [J]. Sedimentary Geology, 2007, 196(1-4): 157-179. doi: 10.1016/j.sedgeo.2006.05.030

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(2914) PDF downloads(141) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint