Citation: | WANG Yidan, YU Fusheng, LIU Zhina, WANG Yuheng, WANG Yiqun. Two-dimensional discrete element simulation of plate subduction deformation process: An insight into the genesis of East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 163-173. doi: 10.16562/j.cnki.0256-1492.2019070306 |
Subduction deformation is a tectonic phenomenon in the process of plates convergence, which remains a hot topic. The East China Sea Shelf Basin is located in the south-eastern border of the Eurasian plate, whose tectonic evolution and dynamic mechanism are related to the subduction of the Philippine plate and the Pacific plate beneath the Eurasian plate. At present, the research on the subduction deformation is still not so perfect, and the influence of subduction angle changes on the deformation process needs further study. The authors, in this paper, tried to use the method of discrete element simulation, a kind of emerging method in the field of tectonics, to simulate the evolution process of plate subduction deformation. By constructing discrete element models and comparing the experimental results with the strata in the subduction zone between the Philippine plate and the East China Sea, the research shows that (1) The subduction deformation characteristics are related to the subduction angle. Different subduction angles result in different deformation patterns. (2) The number of faults and the horizontal offsets of faults increase as the subduction angle decreases. Fault displacement at the same position under different subduction angles is different. (3) The height of the subduction wedge and deformation degree increases as the subduction angle decreases. And the shape of subduction wedge is different. (4) Back-thrusts form later as the subduction angle decreases. (5) Experimental simulation results have similar structural characteristics with instance. The experimental simulation results may explain the evolution process of plate subduction deformation under different subduction angles, which is helpful to further understand the subduction deformation during plates convergence process.
[1] | Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems[C]//Proceedings of International Proceedings Symposium on Rock Fracture. Nancy, France, 1971: 128-132. |
[2] | 蔡申阳, 尹宏伟, 李长圣, 等. 基于离散元数值模拟的应变分析和裂缝预测技术[J]. 高校地质学报, 2016, 22(1):183-193 CAI Shenyang, YIN Hongwei, LI Changsheng, et al. Technology of strain analysis and fracture prediction based on DEM numerical simulation [J]. Geological Journal of China Universities, 2016, 22(1): 183-193. |
[3] | Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method [J]. Powder Technology, 2000, 109(1-3): 192-205. doi: 10.1016/S0032-5910(99)00236-3 |
[4] | Strayer L M, Suppe J. Out-of-plane motion of a thrust sheet during along-strike propagation of a thrust ramp: a distinct-element approach [J]. Journal of Structural Geology, 2002, 24(4): 637-650. doi: 10.1016/S0191-8141(01)00115-8 |
[5] | Finch E, Hardy S, Gawthorpe R. Discrete element modelling of contractional fault-propagation folding above rigid basement fault blocks [J]. Journal of Structural Geology, 2003, 25(4): 515-528. doi: 10.1016/S0191-8141(02)00053-6 |
[6] | Strayer L M, Erickson S G, Suppe J. Influence of Growth Strata on the Evolution of Fault-Related Folds—Distinct-Element Models[M]//McClay K R. Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, 2004: 413-437. |
[7] | Hardy S, Finch E. Discrete-element modelling of detachment folding [J]. Basin Research, 2005, 17(4): 507-520. doi: 10.1111/j.1365-2117.2005.00280.x |
[8] | González G, Gerbault M, Martinod J, et al. Crack formation on top of propagating reverse faults of the Chuculay Fault System, northern Chile: insights from field data and numerical modelling [J]. Journal of Structural Geology, 2008, 30(6): 791-808. doi: 10.1016/j.jsg.2008.02.008 |
[9] | 张洁, 尹宏伟, 徐士进. 用离散元方法讨论岩石强度对主动底辟盐构造断层分布模式的影响[J]. 南京大学学报: 自然科学, 2008, 44(6):642-652 ZHANG Jie, YIN Hongwei, XU Shijin. Influence of rock strength on fault patterns above active salt domes: insights from 2D discrete element simulations [J]. Journal of Nanjing University: Natural Sciences, 2008, 44(6): 642-652. |
[10] | Abe S, Van Gent H, Urai J L. DEM simulation of normal faults in cohesive materials [J]. Tectonophysics, 2011, 512(1-4): 12-21. doi: 10.1016/j.tecto.2011.09.008 |
[11] | Egholm D L, Sandiford M, Clausen O R, et al. A new strategy for discrete element numerical models: 2. Sandbox applications [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05204. |
[12] | Hardy S. The Devil truly is in the detail. A cautionary note on computational determinism: Implications for structural geology numerical codes and interpretation of their results [J]. Interpretation, 2015, 3(4): SAA29-SAA35. doi: 10.1190/INT-2015-0052.1 |
[13] | Botter C, Cardozo N, Hardy S, et al. Seismic characterisation of fault damage in 3D using mechanical and seismic modelling [J]. Marine and Petroleum Geology, 2016, 77: 973-990. doi: 10.1016/j.marpetgeo.2016.08.002 |
[14] | De Franco R, Govers R, Wortel R. Nature of the plate contact and subduction zones diversity [J]. Earth and Planetary Science Letters, 2008, 271(1-4): 245-253. doi: 10.1016/j.jpgl.2008.04.019 |
[15] | Lallemand S, Heuret A, Boutelier D. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(9). |
[16] | Billen M I, Hirth G. Rheologic controls on slab dynamics [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(8): Q08012. |
[17] | Hardy S, McClay K, Muñoz J A. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges [J]. Marine and Petroleum Geology, 2009, 26(2): 232-248. doi: 10.1016/j.marpetgeo.2007.12.003 |
[18] | Burbidge D R, Braun J. Numerical models of the evolution of accretionary wedges and fold-and-thrust belts using the distinct-element method [J]. Geophysical Journal International, 2002, 148(3): 542-561. doi: 10.1046/j.1365-246x.2002.01579.x |
[19] | Naylor M, Sinclair H D, Willett S, et al. A discrete element model for orogenesis and accretionary wedge growth [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B12): B12403. doi: 10.1029/2003JB002940 |
[20] | Egholm D L. A new strategy for discrete element numerical models: 1. Theory [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05203. |
[21] | Liu Z N, Koyi H A. The impact of a weak horizon on kinematics and internal deformation of a failure mass using discrete element method [J]. Tectonophysics, 2013, 586: 95-111. doi: 10.1016/j.tecto.2012.11.009 |
[22] | Okamura Y, Nishizawa A, Oikawa M, et al. Differential subsidence of the forearc wedge of the Ryukyu (Nansei-Shoto) Arc caused by subduction of ridges on the Philippine Sea Plate [J]. Tectonophysics, 2017, 717: 399-412. doi: 10.1016/j.tecto.2017.08.025 |
[23] | Nishizawa A, Kaneda K, Oikawa M, et al. Variations in seismic velocity distribution along the Ryukyu (Nansei-Shoto) Trench subduction zone at the northwestern end of the Philippine Sea plate [J]. Earth, Planets and Space, 2017, 69(1): 86. doi: 10.1186/s40623-017-0674-7 |
[24] | Lallemand S, Heuret A, Boutelier D. On the relationships between slab dip, back‐arc stress, upper plate absolute motion, and crustal nature in subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2015, 6(9): Q09006. |
[25] | Skinner S M, Clayton R W. An evaluation of proposed mechanisms of slab flattening in central Mexico [J]. Pure and Applied Geophysics, 2011, 168(8-9): 1461-1474. doi: 10.1007/s00024-010-0200-3 |
[26] | 皇甫鹏鹏, 王岳军, 范蔚茗, 等. 大洋平板俯冲的数值模拟再现: 洋–陆汇聚速率影响[J]. 大地构造与成矿学, 2016, 40(3):429-445 HUANGFU Pengpeng, WANG Yuejun, FAN Weiming, et al. Numerical modeling of flat subduction: constraints from the ocean-continent convergence velocity [J]. Geotectonica et Metallogenia, 2016, 40(3): 429-445. |
[27] | Yang C Q, Yang Y Q, Li G, et al. The Mesozoic basin-mountain coupling process of the southern East China Sea shelf basin and its adjacent land area [J]. Acta Geologica Sinica - English Edition, 2016, 90(3): 1051-1052. doi: 10.1111/1755-6724.12748 |
[28] | 侯方辉, 张训华, 李刚, 等. 从被动陆缘到主动陆缘——东海陆架盆地中生代构造体制转换的盆地记录[J]. 石油地球物理勘探, 2015, 50(5):980-990 HOU Fanghui, ZHANG Xunhua, LI Gang, et al. From passive continental margin to active continental margin: basin recordings of Mesozoic tectonic regime transition of the East China Sea Shelf Basin [J]. Oil Geophysical Prospecting, 2015, 50(5): 980-990. |
[29] | Shang L N, Zhang X H, Jia Y G, et al. Late Cenozoic evolution of the East China continental margin: Insights from seismic, gravity, and magnetic analyses [J]. Tectonophysics, 2017, 698: 1-15. doi: 10.1016/j.tecto.2017.01.003 |
[30] | 杨长清, 杨传胜, 李刚, 等. 东海陆架盆地南部中生代构造演化与原型盆地性质[J]. 海洋地质与第四纪地质, 2012, 32(3):105-111 YANG Changqing, YANG Chuansheng, LI Gang, et al. Mesozoic tectonic evolution and prototype basin characters in the southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2012, 32(3): 105-111. |
[31] | 崔幸, 王亮亮, 罗洪明, 等. 东海陆架盆地南部中生代盆地性质与演化: 砂箱物理模拟检验[J]. 海洋地质与第四纪地质, 2017, 37(4):181-192 CUI Xing, WANG Liangliang, LUO Hongming, et al. Sandbox modeling test for Mesozoic basins in southern East China Sea Shelf Basin [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 181-192. |
[32] | Cui X, Dai L M, Li S D, et al. Control of strike‐slip and pull‐apart processes to tectonic transition of the southern East China Sea Shelf Basin [J]. Geological Journal, 2019, 54(2): 850-561. doi: 10.1002/gj.3363 |
[33] | Liu Z, Dai L M, Li S Z, et al. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: thermo‐mechanical modelling [J]. Geological Journal, 2018, 53(S1): 240-251. |
[34] | Hu M Y, Li S Z, Dai L M, et al. Dynamic mechanism of tectonic inversion and implications for oil–gas accumulation in the Xihu Sag, East China Sea Shelf basin: insights from numerical modelling [J]. Geological Journal, 2018, 53(S1): 225-239. |
[35] | Abedi M, Bahroudi A. A geophysical potential field study to image the Makran subduction zone in SE of Iran [J]. Tectonophysics, 2016, 688: 119-134. doi: 10.1016/j.tecto.2016.09.025 |
[36] | Kopp C, Fruehn J, Flueh E R, et al. Structure of the makran subduction zone from wide-angle and reflection seismic data [J]. Tectonophysics, 2000, 329(1-4): 171-191. doi: 10.1016/S0040-1951(00)00195-5 |
[37] | Grando G, McClay K. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran [J]. Sedimentary Geology, 2007, 196(1-4): 157-179. doi: 10.1016/j.sedgeo.2006.05.030 |
Schematic diagram of subduction deformation experimental device for discrete element numerical simulation
Interpretation of the deformation process in the discrete element simulation experiment at 30° subduction angle
Interpretation of the deformation process in the discrete element simulation experiment at 15° subduction angle
Interpretation of the deformation process in the discrete element simulation experiment at 5° subduction angle
Cumulative displacement from the discrete element simulation experiments
Fault displacement variation of F1 with subduction in three experiments
Variation of wedge height with subduction in three experiments
Geographical map of East China Sea Shelf Basin (a) with seismic profile (b), (c) and (d) The lower left of (b) shows the P wave velocity profile (after references[22-23])
Comparison of the experimental results with seismic profile
Comparison of the experimental results with Makran's accretion wedge
Evolution model of the East China Sea Shelf Basin (after reference[30])