2019 Vol. 39, No. 5
Article Contents

TAO Jianli, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, MA Fangfang, LAN Haoyuan, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 174-185. doi: 10.16562/j.cnki.0256-1492.2019040101
Citation: TAO Jianli, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, MA Fangfang, LAN Haoyuan, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 174-185. doi: 10.16562/j.cnki.0256-1492.2019040101

Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane

More Information
  • Accretion of oceanic plateau is an important process of continental growth, and is exemplified by the presence of oceanic island basalts (OIB) and plume-type ophiolites in many modern orogens. Oceanic plateau can also subduct along convergent margins, as revealed by seismic tomography. The mechanism controlling accretion or subduction of oceanic plateau remain unclear. In this paper, we investigate the accretion of oceanic plateaus at continental margins using a thermo-mechanical-petrological model of an ocean-continent convergent zone. The results of the models show three major factors for the accretion of the oceanic plateaus onto the continental margin: (1) thinned continental margin for the overriding plate, (2) “weak” layers in oceanic lithosphere and (3) young oceanic plateau. The results of the model are further compared with the field structural analysis and geochemical characteristics of the Nadanhada Terrane in Northeast China. It is revealed that the intense compression of the seamount and the continental margin of Northeast Asia results in strain concentration in the subduction zone, forming high-angle thrust faults and back thrusts associated with the Alpine-type folds, and structural exhumation of low-metamorphic rocks through thrust faults.

  • 加载中
  • [1] Dobretsov N L, Buslov M M, Yu U. Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia: Early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time [J]. Journal of Asian Earth Sciences, 2004, 23(5): 673-690. doi: 10.1016/S1367-9120(03)00132-9

    CrossRef Google Scholar

    [2] Tetreault J L, Buiter S J H. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments [J]. Solid Earth, 2014, 5(2): 1243-1275. doi: 10.5194/se-5-1243-2014

    CrossRef Google Scholar

    [3] Liu L, Zhang J S. Differential contraction of subducted lithosphere layers generates deep earthquakes [J]. Earth and Planetary Science Letters, 2015, 421: 98-106. doi: 10.1016/j.jpgl.2015.03.053

    CrossRef Google Scholar

    [4] Axen G J, Van Wijk J W, Currie C A. Basal continental mantle lithosphere displaced by flat-slab subduction [J]. Nature Geoscience, 2018, 11: 961-964. doi: 10.1038/s41561-018-0263-9

    CrossRef Google Scholar

    [5] Wu F Y, Yang J H, Xu Y, et al. Destruction of the North China Craton in the Mesozoic [J]. Annual Review of Earth and Planetary Sciences, 2019.

    Google Scholar

    [6] Niu Y L, Liu Y, Shao F L, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic [J]. Science Bulletin, 2015, 60(18): 1598-1616. doi: 10.1007/s11434-015-0891-z

    CrossRef Google Scholar

    [7] Ding W W, Li J B, Wu Z C, et al. Late Mesozoic transition from Andean-type to Western pacific-type of the East China continental margin-Is the East China Sea basement an allochthonous terrain [J]. Geological Journal, 2017, 52(5): 1994-2002.

    Google Scholar

    [8] Huang H H, Wu Y M, Song X, et al. Joint Vp and Vs tomography of Taiwan: implications for subduction-collision orogeny [J]. Earth and Planetary Science Letters, 2014, 392: 177-191. doi: 10.1016/j.jpgl.2014.02.026

    CrossRef Google Scholar

    [9] Zhou J B, Cao J L, Wilde S A, et al. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China [J]. Tectonics, 2014, 33(12): 2444-2466. doi: 10.1002/2014TC003637

    CrossRef Google Scholar

    [10] Cloos M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts [J]. Geological Society of America Bulletin, 1993, 105(6): 715. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2

    CrossRef Google Scholar

    [11] Mason W G, Moresi L, Betts P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones [J]. Tectonophysics, 2010, 483(1-2): 0-79.

    Google Scholar

    [12] Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8).

    Google Scholar

    [13] Vogt K, Gerya T V. From oceanic plateaus to allochthonous terranes: numerical modelling [J]. Gondwana Research, 2014, 25(2): 494-508. doi: 10.1016/j.gr.2012.11.002

    CrossRef Google Scholar

    [14] Yang S H, Li Z H, Gerya T, et al. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet [J]. Tectonophysics, 2018, 746: 212-228. doi: 10.1016/j.tecto.2017.07.018

    CrossRef Google Scholar

    [15] 李三忠, 张勇, 郭玲莉, 等. 那丹哈达地体及周缘中生代变形与增生造山过程[J]. 地学前缘, 2017, 24(4):200-212

    Google Scholar

    LI Sanzhong, ZHANG Yong, GUO Lingli, et al. Mesozoic deformation and accretionary orogenic processes around the Nadanhada Terrane [J]. Earth Science Frontiers, 2017, 24(4): 200-212.

    Google Scholar

    [16] Liu Y J, Li W, Feng Z, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt [J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [17] 刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 37(04):943-951 doi: 10.3969/j.issn.1000-3657.2010.04.010

    CrossRef Google Scholar

    LIU Yongjiang, ZHANG Xingzhou, JIN Wei, et al. Paleozoic tectonic evolution in Northeast China [J]. Geology in China, 2010, 37(04): 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010

    CrossRef Google Scholar

    [18] Ouyang H G, Mao J W, Santosh M, et al. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio-temporal distribution patterns of ore deposits [J]. Journal of Asian Earth Sciences, 2013, 78(12): 222-236.

    Google Scholar

    [19] Li S Z, Jahn B, Zhao S J, et al. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data [J]. Earth-Science Reviews, 2017, 166: 270-285. doi: 10.1016/j.earscirev.2017.01.009

    CrossRef Google Scholar

    [20] Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China [J]. Island Arc, 2007, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x

    CrossRef Google Scholar

    [21] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate [J]. Journal of Asian Earth Sciences, 2006, 26(3): 207-224.

    Google Scholar

    [22] Tang J, Xu W, Niu Y, et al. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate [J]. Lithos, 2016, 266: 202-212.

    Google Scholar

    [23] Kojima S. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 69(3-4): 213-232.

    Google Scholar

    [24] Mizutani S, Kojima S, Shao J A, et al. Mesozoic radiolarians from the Nadanhada area, northeast China [J]. Proceedings of the Japan Academy Ser B Physical and Biological Sciences, 1986, 62(9): 337-340. doi: 10.2183/pjab.62.337

    CrossRef Google Scholar

    [25] Gerya T V, Yuen D A. Charaterictics-based marker method with conservative finite-difference schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006

    CrossRef Google Scholar

    [26] Burg J P, Gerya T V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps [J]. Journal of Metamorphic Geology, 2005, 23(2): 21.

    Google Scholar

    [27] Gerya T V, 2010. Introduction to Numerical Geodynamic Modelling[M]. Cambridge University Press, New York.

    Google Scholar

    [28] Ranalli G. Rheology of the Earth: Deformation and Flow Processes in Geophysics and Geodynamics, 2nd ed[M]. Springer Science and Business Media, 1995.

    Google Scholar

    [29] Gerya T V, Yuen D A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones [J]. Earth and Planetary Science Letters, 2003, 212(1): 47-62.

    Google Scholar

    [30] Gerya T V, Meilick F I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts [J]. Journal of Metamorphic Geology, 2011, 29(1): 7-31. doi: 10.1111/j.1525-1314.2010.00904.x

    CrossRef Google Scholar

    [31] Bittner D, Schmeling H. Numerical Modelling of Melting Processes and Induced Diapirism In the Lower Crust [J]. Geophysical Journal International, 1995, 123(1): 59-70. doi: 10.1111/j.1365-246X.1995.tb06661.x

    CrossRef Google Scholar

    [32] Clauser C, Huenges E. Thermal conductivity of rocks and Minerals[M]. Rock Physics and Phase Relations: A Handbook of Physical Constants. American Geophysical Union, 1995: 105-126.

    Google Scholar

    [33] Turcotte D, Schubert G. Geodynamics[M]. Cambridge university press, 2002: 1-456.

    Google Scholar

    [34] Hilairet N, Reynard B, Wang Y, et al. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction [J]. Science, 2007, 318(5858).

    Google Scholar

    [35] Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9

    CrossRef Google Scholar

    [36] 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63:3070-3088

    Google Scholar

    LIU Jing, ZHANG Jinyu, GE Yukui, et al. Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes [J]. Chin Sci Bull, 2018, 63: 3070-3088.

    Google Scholar

    [37] Mann P, Taira A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone [J]. Tectonophysics, 2004, 389(3-4): 0-190.

    Google Scholar

    [38] Shulgin A, Kopp H, Mueller C, et al. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards [J]. Geophysical Journal International, 2011, 184(1): 12-28. doi: 10.1111/j.1365-246X.2010.04834.x

    CrossRef Google Scholar

    [39] Dai L M, Li S Z, Li Z H, et al. Dynamic processes and mechanisms for collision to post﹐rogenic extension in the Western Dabie Orogen: Insights from numerical modeling [J]. Geological Journal, 2017, 52: 44-58. doi: 10.1002/gj.2993

    CrossRef Google Scholar

    [40] Dai L M, Li S Z, Li Z H, et al. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: Numerical modeling and implications for the Western Dabie Orogen [J]. Earth-Science Reviews, 2018, 182: 68-84. doi: 10.1016/j.earscirev.2018.05.005

    CrossRef Google Scholar

    [41] Liu Z, Dai L M, Li S, et al. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: Thermo-mechanical modelling [J]. Geological Journal, 2018, 53: 240-251. doi: 10.1002/gj.3021

    CrossRef Google Scholar

    [42] Liao J, Wang Q, Gerya T, et al. Modeling craton destruction by hydration‐induced weakening of the upper mantle [J]. Journal of Geophysical Research Solid Earth, 2017, 122(9): 7449-7466. doi: 10.1002/2017JB014157

    CrossRef Google Scholar

    [43] Gerya T V, Perchuk L L, Burg J P, 20 08. Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts [J]. Lithos, 2008, 103(1-2): 236-256. doi: 10.1016/j.lithos.2007.09.017

    CrossRef Google Scholar

    [44] Li Z H, Liu M, Gerya T. Lithosphere delamination in continental collisional orogens: A systematic numerical study [J]. Journal of Geophysical Research Solid Earth, 2016, 121: 5186-5211. doi: 10.1002/2016JB013106

    CrossRef Google Scholar

    [45] Clerc C, Jolivet L, Ringenbach J C. Ductile extensional shear zones in the lower crust of a passive margin [J]. Earth and Planetary Science Letters, 2015, 431: 1-7. doi: 10.1016/j.jpgl.2015.08.038

    CrossRef Google Scholar

    [46] Ramos A, Fernández O, Torne M, et al. Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys [J]. Tectonophysics, 2017, 705: 42-62. doi: 10.1016/j.tecto.2017.03.012

    CrossRef Google Scholar

    [47] Ruiz M, Díaz J, Pedreira D, et al. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles [J]. Tectonophysics, 2017, 717: 65-82. doi: 10.1016/j.tecto.2017.07.008

    CrossRef Google Scholar

    [48] Nair N, Pandey D K. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India [J]. Journal of Asian Earth Sciences, 2018, 152: 132-144. doi: 10.1016/j.jseaes.2017.11.037

    CrossRef Google Scholar

    [49] Schubert G, Sandwell D. Crustal volumes of the continents and of oceanic and continental submarine plateaus [J]. Earth and Planetary Science Letters, 1989, 92(2): 234-246. doi: 10.1016/0012-821X(89)90049-6

    CrossRef Google Scholar

    [50] Zagorevski A, Lissenberg C J, Van Staal C R. Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians [J]. Tectonophysics, 2009, 479(1-2): 150-164. doi: 10.1016/j.tecto.2008.12.002

    CrossRef Google Scholar

    [51] Johnson H P, Pruis M J. Fluxes of fluid and heat from the oceanic crustal reservoir [J]. Earth and Planetary Science Letters, 2003, 216(4): 0-574.

    Google Scholar

    [52] Vogt K, Gerya T. Deep plate serpentinization triggers skinning of subducting slabs [J]. Geology, 2014, 42(8): 723-726. doi: 10.1130/G35565.1

    CrossRef Google Scholar

    [53] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth and Planetary Science Letters, 1990, 99(1): 79-93.

    Google Scholar

    [54] Davies G F. Topography: a robust constraint on mantle fluxes [J]. Chemical Geology, 1998, 145(3-4): 479-489. doi: 10.1016/S0009-2541(97)00156-3

    CrossRef Google Scholar

    [55] Hill R I, Campbell I H, Davies G F, et al. Mantle Plumes and Continental Tectonics [J]. Science, 1992, 256(5054): 186-193. doi: 10.1126/science.256.5054.186

    CrossRef Google Scholar

    [56] Niu Y, O'Hara M J, Pearce J A. Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere: a Petrological Perspective [J]. Journal of Petrology, 2003, 44(11): 764-778.

    Google Scholar

    [57] Burke K, Fox P J, Şengör A M C. Buoyant ocean floor and the evolution of the Caribbean [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B8).

    Google Scholar

    [58] Alsaad N, Van A R, Pranger A D, et al. Continental accretion: from oceanic plateaus to allochthonous terranes [J]. Science, 1981, 213: 47-54. doi: 10.1126/science.213.4503.47

    CrossRef Google Scholar

    [59] Abbott D H, Drury R, Mooney W D. Continents as lithological icebergs: the importance of buoyant lithospheric roots [J]. Earth and Planetary Science Letters, 1997, 149(1-4): 0-27.

    Google Scholar

    [60] Mueller R F, Saxena S K. Metamorphic mineral facies[M]//Chemical Petrology. Springer, New York, NY, 1977: 181-198.

    Google Scholar

    [61] Gulick S P S, Bangs N L B, Shipley T H, et al. Three-dimensional architecture of the Nankai accretionary prism's imbricate thrust zone off Cape Muroto, Japan: prism reconstruction via en echelon thrust propagation [J]. Journal of Geophysical Research Solid Earth, 2004: 109.

    Google Scholar

    [62] Gutscher M A, Kukowski N, Malavieille J, et al. Episodic imbricatethrusting and underthrusting: analog experiments and mechanical analysis applied to the Alaskan accretionary wedge [J]. Journal of Geophysical Research Solid Earth, 1998, 103: 10161-10176. doi: 10.1029/97JB03541

    CrossRef Google Scholar

    [63] 万阔. 完达山地体构造特征、结构及增生过程[D]. 吉林大学, 2017

    Google Scholar

    WAN Kuo. Tectonic features, structures and accretionary processes of the Wandashan Terrane, NE China[D]. Jilin University, 2017

    Google Scholar

    [64] 兰浩圆. 华北东部及东北早中生代变形特征与构造演化[D]. 中国海洋大学, 2018

    Google Scholar

    LAN Haoyuan. Early Mesozoic structural features and tectonic evolution in the eastern North China and Northeast China[D]. Ocean University of China, 2018

    Google Scholar

    [65] 张魁武, 邵济安, 唐克东, 等. 黑龙江省东部跃进山群中绿片岩的地球化学特征及地质意义[J]. 岩石学报, 1997(02):43-47

    Google Scholar

    ZHANG Kuiwu, SHAO Jian, TANG Kedong, et al. The Geochemical Characteristics and the Geological Significance of Green-schists in Yuejinshan Group, East Heilongjiang Province, China [J]. Acta Petrologica Sinica, 1997(02): 43-47.

    Google Scholar

    [66] Sun M D, Xu Y G, Wilde S A, et al. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo‐Pacific [J]. Tectonics, 2015, 34(6): 1269-1289. doi: 10.1002/2015TC003870

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(3392) PDF downloads(221) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint