2019 Vol. 39, No. 5
Article Contents

ZHAO Shuai, LI Xuejie, YAO Yongjian, XIE Xinong, XIAO Suyun, HE Xi, DENG Yutian, SHI Menglin, ZHOU Mo. Orogenic events in Southern South China Sea and their relationship with the subduction of the Proto South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 147-162. doi: 10.16562/j.cnki.0256-1492.2018102801
Citation: ZHAO Shuai, LI Xuejie, YAO Yongjian, XIE Xinong, XIAO Suyun, HE Xi, DENG Yutian, SHI Menglin, ZHOU Mo. Orogenic events in Southern South China Sea and their relationship with the subduction of the Proto South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 147-162. doi: 10.16562/j.cnki.0256-1492.2018102801

Orogenic events in Southern South China Sea and their relationship with the subduction of the Proto South China Sea

More Information
  • The original location of the Proto South China Sea and the processes related to its subduction and termination have remained under debates, and no consensus has been reached up to date. It is not only closely related to the expansion of the South China Sea, but also significant to the study of the geodynamics of the region. After a thorough review of previous literatures, this paper is devoted to the orogenic processes and their bearing on the subduction of the Proto South China Sea. The results show that the tectonic activities in the Southern South China Sea could be divided into two phases. The first phase of the activities happened from Early Cretaceous to Late Cretaceous , while the oceanic crust of the Paleao-Pacific subducted below the island of Borneo. The subduction zone was located along the current Lupal line, which caused the Zengmu-Nansha block to move towards the southwestern Borneo. It was closed in Late Cretaceous by a collision orogeny. Since Borneo itself is composed of many blocks and suffered multiple collisions during the period of Eocene, there were the deformation and reorganization of blocks after collision. Eventually, the final phase of the deformation (i.e. the Sarawak Movement) was completed in Late Eocene (37 Ma). The second phase of movement was from Late Eocene (35 Ma) to Middle Miocene (15.5 Ma). The Proto South China Sea from east of the West Baram Line to Cagayan of Philippines, was subducting eastward from the West Baram Line towards the island of Borneo. It swooped and then spread to Sabah and the area to the south of Palawan and stopped at the Mindoro Island, the Philippines. The resulting drag force was driving the expansion of the South China Sea. Similar to the effect of the subduction of the Paleo-Pacific plate, the subduction of the Proto South China Sea triggered the closure of the sea between the Borneo Island and the Nansha block in Middle Miocene (15.5 Ma), causing the collision between the Nansha block and the Borneo island in Sabah (i.e. the Saba orogen) and the collision between the Palawan micro-continent and the Philippine island arc (i.e. the Palawan collision). The unconformities are widely distributed in this region as the product of this subduction process in the Southern South China Sea. They can also be observed on the Palawan Island. Nowadays, the Nansha Trough and the Palawan Trough are no longer regarded as the foreland of the subduction zone. The former is the tectonic response to the gravity-driven deformation of the Sabah Neogene sedimentary wedge, while the latter is the collision forefront generated by the southern South China Sea. Strong subsidence occurs under the action of late accretion wedges. The real subduction zones are located respectively in the southeast of the Nansha Trough and in the southeast of the Palawan Trough. There is evidence supporting the hypothesis that subduction process of Proto South China Sea ceased about 10 Ma ago in the Mindanao of the Philippines, thus closed the entire Paleo-South China Sea.

  • 加载中
  • [1] Holloway N H. North Palawan block, Philippines-- Its relation to Asian mainland and role in evolution of South China Sea [J]. AAPG Bulletin, 1982, 66(9): 1355-1383.

    Google Scholar

    [2] Taylor B, Hayes D E. Origin and history of the South China Sea Basin[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and islands: Part 2. Washington, D. C: American Geophysical Union, 1983: 23-56.

    Google Scholar

    [3] Hall R. Reconstructing Cenozoic SE Asia[M]//Hall R, Blundell D J. Tectonic Evolution of SE Asia. Geological Society, London, Special Publications, 1996: 153-184.

    Google Scholar

    [4] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4

    CrossRef Google Scholar

    [5] 王鹏程, 李三忠, 郭玲莉, 等. 南海打开模式: 右行走滑拉分与古南海俯冲拖曳[J]. 地学前缘, 2017, 24(4):294-319

    Google Scholar

    WANG Pengcheng, LI Sanzhong, GUO Lingli, et al. Opening of the South China Sea (SCS): a joint effect of dextral strike-slip pull-apart and proto-SCS slab pull [J]. Earth Science Frontiers, 2017, 24(4): 294-319.

    Google Scholar

    [6] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine [J]. Geology, 1982, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    CrossRef Google Scholar

    [7] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. doi: 10.1029/92JB02280

    CrossRef Google Scholar

    [8] Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia [J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B4): 6683-6732. doi: 10.1029/2000JB900322

    CrossRef Google Scholar

    [9] Gilder S A, Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B7): 16137-16154. doi: 10.1029/96JB00662

    CrossRef Google Scholar

    [10] Hutchison C S. Marginal basin evolution: the southern South China Sea [J]. Marine and Petroleum Geology, 2004, 21(9): 1129-1148. doi: 10.1016/j.marpetgeo.2004.07.002

    CrossRef Google Scholar

    [11] Cullen A, Reemst P, Henstra G, et al. Rifting of the South China Sea: new perspectives [J]. Petroleum Geoscience, 2010, 16(3): 273-282. doi: 10.1144/1354-079309-908

    CrossRef Google Scholar

    [12] Wang P C, Li S Z, Guo L L, et al. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms [J]. Geological Journal, 2016, 51(S1): 464-489.

    Google Scholar

    [13] Zheng Q L, Li S Z, Suo Y H, et al. Structures around the Tinjar‐West Baram Line in northern Kalimantan and seafloor spreading in the proto‐South China Sea [J]. Geological Journal, 2016, 51(S1): 513-523.

    Google Scholar

    [14] Hall R, Breitfeld H T. Nature and demise of the Proto-South China Sea [J]. Bulletin of the Geological Society of Malaysia, 2017, 63: 61-76. doi: 10.7186/bgsm63201703

    CrossRef Google Scholar

    [15] Hesse S, Back S, Franke D. The structural evolution of folds in a deepwater fold and thrust belt - a case study from the Sabah continental margin offshore NW Borneo, SE Asia [J]. Marine and Petroleum Geology, 2010, 27(2): 442-454. doi: 10.1016/j.marpetgeo.2009.09.004

    CrossRef Google Scholar

    [16] King R C, Backé G, Morley C K, et al. Balancing deformation in NW Borneo: quantifying plate-scale vs. gravitational tectonics in a delta and deepwater fold-thrust belt system [J]. Marine and Petroleum Geology, 2010, 27(1): 238-246. doi: 10.1016/j.marpetgeo.2009.07.008

    CrossRef Google Scholar

    [17] Rangin C, Stephan J F, Butterlin J, et al. Collision néogène d’arcs volcaniques dans le centre des Philippines: stratigraphie et structure de la chaîne d’Antique (île de Panay) [J]. Bulletin Societe Géologique du France, 1991, 162(3): 465-477.

    Google Scholar

    [18] Liu W N, Li C F, Li J B, et al. Deep structures of the Palawan and Sulu Sea and their implications for opening of the South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 721-735. doi: 10.1016/j.marpetgeo.2014.06.005

    CrossRef Google Scholar

    [19] Hall R, Spakman W. Mantle structure and tectonic history of SE Asia [J]. Tectonophysics, 2015, 658: 14-45. doi: 10.1016/j.tecto.2015.07.003

    CrossRef Google Scholar

    [20] Franke D, Barckhausen U, Baristeas N, et al. The continent-ocean transition at the southeastern margin of the South China Sea [J]. Marine and Petroleum Geology, 2011, 28(6): 1187-1204. doi: 10.1016/j.marpetgeo.2011.01.004

    CrossRef Google Scholar

    [21] Tapponnier P, Peltzer G, Armijo P. On the mechanics of the collision between India and Asia [J]. Geological Society, London, Special Publications, 1986, 19(1): 113-157. doi: 10.1144/GSL.SP.1986.019.01.07

    CrossRef Google Scholar

    [22] 任建业, 李思田. 西太平洋边缘海盆地的扩张过程和动力学背景[J]. 地学前缘, 2000, 7(3):203-213 doi: 10.3321/j.issn:1005-2321.2000.03.019

    CrossRef Google Scholar

    REN Jianye, LI Sitian. Spreading and dynamic setting of marginal basins of the western pacific [J]. Earth Science Frontiers, 2000, 7(3): 203-213. doi: 10.3321/j.issn:1005-2321.2000.03.019

    CrossRef Google Scholar

    [23] 周蒂, 陈汉宗, 吴世敏, 等. 南海的右行陆缘裂解成因[J]. 地质学报, 2002, 76(2):180-190 doi: 10.3969/j.issn.1006-7493.2002.02.007

    CrossRef Google Scholar

    ZHOU Di, CHEN Hanzong, WU Shimin, et al. Opening of the South China Sea by dextral splitting of the East Asian continental margin [J]. Acta Geologica Sinica, 2002, 76(2): 180-190. doi: 10.3969/j.issn.1006-7493.2002.02.007

    CrossRef Google Scholar

    [24] 栾锡武, 张亮. 南海构造演化模式: 综合作用下的被动扩张[J]. 海洋地质与第四纪地质, 2009, 29(6):59-74

    Google Scholar

    LUAN Xiwu, ZHANG Liang. Tectonic evolution modes of South China Sea: passive spreading under complex actions [J]. Marine Geology & Quaternary Geology, 2009, 29(6): 59-74.

    Google Scholar

    [25] 朱伟林, 米立军, 张厚和, 等. 中国海域含油气盆地图集[M]. 北京: 石油工业出版社, 2010.

    Google Scholar

    ZHU Weilin, MI Lijun, ZHANG Houhe, et al. Atlas of Oil and Gas Basins, China Sea[M]. Beijing: Petroleum Industry Press, 2010.

    Google Scholar

    [26] 朱伟林, 吴景富, 张功成, 等. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 2015, 22(1):88-101

    Google Scholar

    ZHU Weilin, WU Jingfu, ZHANG Gongcheng, et al. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins [J]. Earth Science Frontiers, 2015, 22(1): 88-101.

    Google Scholar

    [27] Hall R, Van Hattum M W A, Spakman W. Impact of India-Asia collision on SE Asia: the record in Borneo [J]. Tectonophysics, 2008, 451(1-4): 366-389. doi: 10.1016/j.tecto.2007.11.058

    CrossRef Google Scholar

    [28] 方念乔. “海南陆缘弧”体系的构建与“特提斯南海”的识别: 一个关于“古南海”演化新模式的探讨[J]. 地学前缘, 2016, 23(6):107-119

    Google Scholar

    FANG Nianqiao. A new model on the Mesozoic "South China Sea" (SCS): Reconstructing the Hainan marginal arc and recognizing the Tethyan SCS [J]. Earth Science Frontiers, 2016, 23(6): 107-119.

    Google Scholar

    [29] Rangin C, Spakman W, Pubellier M, et al. Tomographic and geological constraints on subduction along the eastern Sundaland continental margin (South-East Asia) [J]. Bulletin Societe Géologique du France, 1999, 170(6): 775-788.

    Google Scholar

    [30] 张功成, 米立军, 屈红军, 等. 中国海域深水区油气地质[J]. 石油学报, 2013, 34(S2):1-14 doi: 10.7623/syxb2013S2001

    CrossRef Google Scholar

    ZHANG Gongcheng, MI Lijun, QU Hongjun, et al. Petroleum geology of deep-water areas in offshore China [J]. Acta Petrolei Sinica, 2013, 34(S2): 1-14. doi: 10.7623/syxb2013S2001

    CrossRef Google Scholar

    [31] Tang Q S, Zheng C. Crust and upper mantle structure and its tectonic implications in the South China Sea and adjacent regions [J]. Journal of Asian Earth Sciences, 2013, 62: 510-525. doi: 10.1016/j.jseaes.2012.10.037

    CrossRef Google Scholar

    [32] 张功成, 屈红军, 刘世翔, 等. 边缘海构造旋回控制南海深水区油气成藏[J]. 石油学报, 2015, 36(5):533-545 doi: 10.7623/syxb201505002

    CrossRef Google Scholar

    ZHANG Gongcheng, QU Hongjun, LIU Shixiang, et al. Tectonic cycle of marginal sea controlled the hydrocarbon accumulation in deep-water areas of South China Sea [J]. Acta Petrolei Sinica, 2015, 36(5): 533-545. doi: 10.7623/syxb201505002

    CrossRef Google Scholar

    [33] Replumaz A, Tapponnier P. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B6): 2285.

    Google Scholar

    [34] 熊莉娟, 李三忠, 索艳慧, 等. 南海南部新生代控盆断裂特征及盆地群成因[J]. 海洋地质与第四纪地质, 2012, 32(6):113-127

    Google Scholar

    XIONG Lijuan, LI Sanzhong, SUO Yanhui, et al. Cenozoic Basin-controlling faults and their bearing on basin groups formaion in the Southern South China Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(6): 113-127.

    Google Scholar

    [35] Hutchison C S. The ‘Rajang accretionary prism’ and ‘Lupar Line’ problem of Borneo[M]//Hall R, Blundell D. Tectonic Evolution of SE Asia. Geological Society, London, Special Publications, 1996: 247-261.

    Google Scholar

    [36] 姚永坚, 夏斌, 徐行. 南海南部海域主要沉积盆地构造演化特征[J]. 南海地质研究, 2005(1):1-11

    Google Scholar

    YAO Yongjian, XIA Bin, XU Xing. Tectonic evolution of the main sedimentary basins in southern area of the South China Sea [J]. Gresearch of Eological South China Sea, 2005(1): 1-11.

    Google Scholar

    [37] Hutchison C S. Geology of North-West Borneo: Sarawak, Brunei and Sabah[M]. Amsterdam: Elsevier, 2005.

    Google Scholar

    [38] Fyhn M B W, Boldreel L O, Nielsen L H. Geological development of the Central and South Vietnamese margin: implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism [J]. Tectonophysics, 2009, 478(3-4): 184-214. doi: 10.1016/j.tecto.2009.08.002

    CrossRef Google Scholar

    [39] Cullen A B. Transverse segmentation of the Baram-Balabac Basin, NW Borneo: refining the model of Borneo’s tectonic evolution [J]. Petroleum Geoscience, 2010, 16(1): 3-29. doi: 10.1144/1354-079309-828

    CrossRef Google Scholar

    [40] Hennig H, Breitfeld H T, Hall R, et al. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo [J]. Gondwana Research, 2017, 48: 292-310. doi: 10.1016/j.gr.2017.05.001

    CrossRef Google Scholar

    [41] Madon M, Kim C L, Wong R. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution [J]. Journal of Asian Earth Sciences, 2013, 76: 312-333. doi: 10.1016/j.jseaes.2013.04.040

    CrossRef Google Scholar

    [42] Hall R, Nichols G. Cenozoic sedimentation and tectonics in Borneo: climatic influences on orogenesis[M]//Jones S J, Frostick L E. Sediment Flux to Basins: Causes, Controls and Consequences. Geological Society, London, Special Publications, 2002: 5-22.

    Google Scholar

    [43] Breitfeld H T, Hall R, Galin T, et al. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo [J]. Tectonophysics, 2017, 694: 35-56. doi: 10.1016/j.tecto.2016.11.034

    CrossRef Google Scholar

    [44] Moss S J. Embaluh Group turbidites in Kalimantan: evolution of a remnant oceanic basin in Borneo during the Late Cretaceous to Palaeogene [J]. Journal of the Geological Society, 1998, 155(3): 509-524. doi: 10.1144/gsjgs.155.3.0509

    CrossRef Google Scholar

    [45] Morley R J). A review of the Cenozoic palaeoclimate history of Southeast Asia[M]//Gower D, Johnson K, Richardson J, et al. Biotic Evolution and Environmental Change in Southeast Asia. Cambridge: Cambridge University Press, 2012: 79-114.

    Google Scholar

    [46] Mat-Zin I C, Tucker M E. An alternative stratigraphic scheme for the Sarawak Basin [J]. Journal of Asian Earth Sciences, 1999, 17(1-2): 215-232. doi: 10.1016/S0743-9547(98)00042-7

    CrossRef Google Scholar

    [47] Hall R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean [J]. Tectonophysics, 2012, 570-571: 1-41. doi: 10.1016/j.tecto.2012.04.021

    CrossRef Google Scholar

    [48] Fuller M, Ali J R, Moss S J, et al. Paleomagnetism of Borneo [J]. Journal of Asian Earth Sciences, 1999, 17(1-2): 3-24. doi: 10.1016/S0743-9547(98)00057-9

    CrossRef Google Scholar

    [49] 姚永坚, 杨楚鹏, 李学杰, 等. 南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义[J]. 地球物理学报, 2013, 56(4):1274-1286 doi: 10.6038/cjg20130422

    CrossRef Google Scholar

    YAO Yongjian, YANG Chupeng, LI Xuejie, et al. The seismic reflection characteristics and tectonic significance of the tectonic revolutionary surface of mid-Miocene (T3 seismic interface) in the southern South China Sea [J]. Chinese Journal of Geophysics, 2013, 56(4): 1274-1286. doi: 10.6038/cjg20130422

    CrossRef Google Scholar

    [50] Hall R. Contraction and extension in northern Borneo driven by subduction rollback [J]. Journal of Asian Earth Sciences, 2013, 76: 399-411. doi: 10.1016/j.jseaes.2013.04.010

    CrossRef Google Scholar

    [51] 李家彪, 丁巍伟, 高金耀, 等. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识[J]. 地球物理学报, 2011, 54(12):3004-3015 doi: 10.3969/j.issn.0001-5733.2011.12.003

    CrossRef Google Scholar

    LI Jiabiao, DING Weiwei, GAO Jinyao, et al. Cenozoic evolution model of the sea-floor spreading in South China Sea: new constraints from high resolution geophysical data [J]. Chinese Journal of Geophysics, 2011, 54(12): 3004-3015. doi: 10.3969/j.issn.0001-5733.2011.12.003

    CrossRef Google Scholar

    [52] 解习农, 任建业, 王振峰, 等. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 2015, 22(1):77-87

    Google Scholar

    XIE Xinong, REN Jianye, WANG Zhenfeng, et al. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading [J]. Earth Science Frontiers, 2015, 22(1): 77-87.

    Google Scholar

    [53] Barckhausen U, Engels M, Franke D, et al. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading [J]. Marine and Petroleum Geology, 2014, 58: 599-611. doi: 10.1016/j.marpetgeo.2014.02.022

    CrossRef Google Scholar

    [54] Ding W W, Franke D, Li J B, et al. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea [J]. Tectonophysics, 2013, 582: 162-176. doi: 10.1016/j.tecto.2012.09.026

    CrossRef Google Scholar

    [55] Mitchell A H G, Hernandez F, Dela Cruz A P. Cenozoic evolution of the Philippine archipelago [J]. Journal of Southeast Asian Earth Sciences, 1986, 1(1): 3-22. doi: 10.1016/0743-9547(86)90003-6

    CrossRef Google Scholar

    [56] Yumul Jr G P, Dimalanta C B, Maglambayan V B, et al. Tectonic setting of a composite terrane: a review of the Philippine Island arc system [J]. Geosciences Journal, 2008, 12(1): 7-17. doi: 10.1007/s12303-008-0002-0

    CrossRef Google Scholar

    [57] Aurelio M A, Peña R E. Geology and Mineral Resources of the Philippines - vol. 1: Geology[M]. Quezon City: Department of Environment and Natural Resources - Mines and Geosciences Bureau, 2004: 391.

    Google Scholar

    [58] MMAJ-JICA: Metal Mining Agency of Japan e Japan International Cooperation Agency[R]. Report on the Mineral Exploration: Mineral Deposits and Tectonics of two Contrasting Geologic Environments in the Republic of the Philippines e Palawan VeVI, Area, West Negros Area and Samar IeIIII Area. Report submitted by MMAJ-JICA to the Republic of the Philippines, 1988: 347.

    Google Scholar

    [59] Rangin C, Bellon H, Benard F, et al. Neogene arc-continent collision in Sabah, northern Borneo (Malaysia) [J]. Tectonophysics, 1990, 183(1-4): 305-319. doi: 10.1016/0040-1951(90)90423-6

    CrossRef Google Scholar

    [60] Mitchell A H G, Estacio R, Flores R, et al. Geology of Central Palawan [J]. The Philippine Geologist, 1985, 39(3): 1-43.

    Google Scholar

    [61] Shao L, Cao L C, Qiao P J, et al. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin [J]. Earth and Planetary Science Letters, 2017, 477: 97-107. doi: 10.1016/j.jpgl.2017.08.019

    CrossRef Google Scholar

    [62] Hamilton W B. Tectonics of the Indonesian Region[M]. Washington: United States Government Printing Office, 1979.

    Google Scholar

    [63] Hinz K, Fritsch J, Kempter E H K, et al. Thrust tectonics along the north-western continental margin of Sabah/Borneo [J]. Geologische Rundschau, 1989, 78(3): 705-730. doi: 10.1007/BF01829317

    CrossRef Google Scholar

    [64] Lee T Y, Lawver L A. Cenozoic plate reconstruction of Southeast Asia [J]. Tectonophysics, 1995, 251(1-4): 85-138. doi: 10.1016/0040-1951(95)00023-2

    CrossRef Google Scholar

    [65] Morley C K. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia [J]. Tectonophysics, 2002, 347(4): 189-215. doi: 10.1016/S0040-1951(02)00061-6

    CrossRef Google Scholar

    [66] Hutchison C S. The North-West Borneo trough [J]. Marine Geology, 2010, 271(1-2): 32-43. doi: 10.1016/j.margeo.2010.01.007

    CrossRef Google Scholar

    [67] Cullen A. Nature and significance of the West Baram and Tinjar Lines, NW Borneo [J]. Marine and Petroleum Geology, 2014, 51: 197-209. doi: 10.1016/j.marpetgeo.2013.11.010

    CrossRef Google Scholar

    [68] Savva D, Pubellier M, Franke D, et al. Different expressions of rifting on the South China Sea margins [J]. Marine and Petroleum Geology, 2014, 58: 579-598. doi: 10.1016/j.marpetgeo.2014.05.023

    CrossRef Google Scholar

    [69] Fan J K, Zhao D P, Dong D D, et al. P-wave tomography of subduction zones around the central Philippines and its geodynamic implications [J]. Journal of Asian Earth Sciences, 2017, 146: 76-89. doi: 10.1016/j.jseaes.2017.05.015

    CrossRef Google Scholar

    [70] Hinz K, Schlüter H. Geology of the dangerous grounds, South China sea, and the continental margin off southwest Palawan: results of SONNE cruises SO-23 and SO-27 [J]. Energy, 1985, 10(3-4): 297-315. doi: 10.1016/0360-5442(85)90048-9

    CrossRef Google Scholar

    [71] Milsom J, Holt R, Ayub D B, et al. Gravity Anomalies and Deep Structural Controls at the Sabah-Palawan Margin, South China Sea[M]//Fraser A J, Matthews S J, Murphy R W. Petroleum Geology of Southeast Asia. Geological Society, London, Special Publications, 1997: 417-427.

    Google Scholar

    [72] Ingram G M, Chisholm T J, Grant C J, et al. Deepwater North West Borneo: hydrocarbon accumulation in an active fold and thrust belt [J]. Marine and Petroleum Geology, 2004, 21(7): 879-887. doi: 10.1016/j.marpetgeo.2003.12.007

    CrossRef Google Scholar

    [73] Hesse S, Back S, Franke D. The deep-water fold-and-thrust belt offshore NW Borneo: gravity-driven versus basement-driven shortening [J]. Geological Society of America Bulletin, 2009, 121(5-6): 939-953. doi: 10.1130/B26411.1

    CrossRef Google Scholar

    [74] Taylor B, Hayes D E. The tectonic evolution of the South China Basin[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Volume 23. Washington: American Geophysical Union, 1980: 89-104.

    Google Scholar

    [75] Fontaine H. Note on the geology of the Calamian islands, North Palawan, Philippines [R]. Bangkok: CCOP Newsletter, 1979: 40-47.

    Google Scholar

    [76] Mitchell A H G, Leach T M. Epithermal Gold in the Philippines: Island Arc Metallogenesis, Geothermal Systems and Geology[M]. Academic Press, 1991.

    Google Scholar

    [77] Almasco J N, Rodolfo K, Fuller M, et al. Paleomagnetism of Palawan, Philippines [J]. Journal of Asian Earth Sciences, 2000, 18(3): 369-389. doi: 10.1016/S1367-9120(99)00050-4

    CrossRef Google Scholar

    [78] Suzuki S, Takemura S, Yumul G P. Composition and provenance of the Upper Cretaceous to Eocene sandstones in Central Palawan, Philippines: constraints on the tectonic development of Palawan [J]. Island Arc, 2000, 9(4): 611-626. doi: 10.1046/j.1440-1738.2000.00306.x

    CrossRef Google Scholar

    [79] Li C F, Zhou Z Y, Li J B, et al. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications [J]. Marine Geophysical Researches, 2007, 28(1): 59-79. doi: 10.1007/s11001-007-9014-9

    CrossRef Google Scholar

    [80] Shi H S, Li C F. Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea [J]. International Geology Review, 2012, 54(15): 1801-1828. doi: 10.1080/00206814.2012.677136

    CrossRef Google Scholar

    [81] Defant M J, Jacques D, Maury R C, et al. Geochemistry and tectonic setting of the Luzon arc, Philippines [J]. Geological Society of America Bulletin, 1989, 101(5): 663-672. doi: 10.1130/0016-7606(1989)101<0663:GATSOT>2.3.CO;2

    CrossRef Google Scholar

    [82] Yeh Y C, Sibuet J C, Hsu S K, et al. Tectonic evolution of the Northeastern South China Sea from seismic interpretation [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B6): B06103.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(3132) PDF downloads(175) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint