2019 Vol. 39, No. 5
Article Contents

MA Fangfang, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, TAO Jianli, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 186-196. doi: 10.16562/j.cnki.0256-1492.2019040102
Citation: MA Fangfang, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, TAO Jianli, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 186-196. doi: 10.16562/j.cnki.0256-1492.2019040102

Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses

More Information
  • In the process of oceanic crust subduction, with the increase in temperature and pressure and the difference in density, the subduction-induced molten plume will rise rapidly and act on the lithospheric mantle bottom of the overriding plate, which may lead to the decrease in the lithospheric damage and the drastic change of surface morphology. This process is similar to the destruction of the lithosphere caused by mantle plume. So far, there have been little studies on the formation of subduction-induced molten plumes and their damage to the lithosphere, especially on the responses of surface dynamic topographic changes to the deep destruction. Based on the conservation equations of matter, momentum and energy, the I2VIS finite difference method is adopted by the authors to calculate and reveal the partial melting of the subducted oceanic crust at different times and depths under given material parameters and boundary conditions. The process of forming a subduction-induced molten plume is obtained, and then the process of molten plume-lithosphere interactions is further simulated, and the response of shallow topographic changes are analyzed. The numerical simulation results show that in the process of oceanic plate subduction, the composite molten plumes formed by subducted terrigenous sediment and oceanic crust eroded the bottom of the lithosphere longitudinally, and resulted in lithospheric thinning. During the transverse erosion of the molten plumes, the melting range of the lithospheric mantle increases up to 300 km. In terms of geomorphic change, plate subduction results in compression deformation of the continental front, which may reach 300 km. At the same time, the erosion of the molten plumes associated with subduction to the bottom of the lithospheric mantle is gradually strengthened, and the dynamic topographic changes increased, while uplifting continued, and ultimately reached a figure of 4 km. The variation range of dynamic topography is limited to 300 km, which is consistent with the damage range of lithospheric mantle.

  • 加载中
  • [1] Morgan W J. Convection plumes in the lower mantle [J]. Nature, 1971, 230(5288): 42-43. doi: 10.1038/230042a0

    CrossRef Google Scholar

    [2] Wilson J T. A possible origin of the Hawaiian islands [J]. Canadian Journal of Physics, 1963, 41(6): 863-870. doi: 10.1139/p63-094

    CrossRef Google Scholar

    [3] Burov E, Guillou-Frottier L, d'Acremont E, et al. Plume head-lithosphere interactions near intra-continental plate boundaries [J]. Tectonophysics, 2007, 434(1-4): 15-38. doi: 10.1016/j.tecto.2007.01.002

    CrossRef Google Scholar

    [4] Christensen U R, Harder H. 3-D convection with variable viscosity [J]. Geophysical Journal International, 1991, 104(1): 213-220. doi: 10.1111/j.1365-246X.1991.tb02505.x

    CrossRef Google Scholar

    [5] 李建康, 王登红. 地幔柱数值模拟研究进展[J]. 地质科技情报, 2005, 24(4):13-20 doi: 10.3969/j.issn.1000-7849.2005.04.003

    CrossRef Google Scholar

    LI Jiankang, WANG Denghong. Advances in the numerical simulation of the mantle plume [J]. Geological Science and Technology Information, 2005, 24(4): 13-20. doi: 10.3969/j.issn.1000-7849.2005.04.003

    CrossRef Google Scholar

    [6] 卢记仁. 峨眉地幔柱的动力学特征[J]. 地球学报, 1996, 17(4):424-438

    Google Scholar

    LU Jiren. Dynamic characteristics of EMEI mantle plume [J]. Acta Geoscientia Sinica, 1996, 17(4): 424-438.

    Google Scholar

    [7] 徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 2002, 9(4):341-353 doi: 10.3321/j.issn:1005-2321.2002.04.014

    CrossRef Google Scholar

    XU Yigang. Mantle plumes, large igneous provinces and their geologic consequences [J]. Earth Science Frontiers, 2002, 9(4): 341-353. doi: 10.3321/j.issn:1005-2321.2002.04.014

    CrossRef Google Scholar

    [8] Gorczyk W, Hobbs B, Gessner K, et al. Intracratonic geodynamics [J]. Gondwana Research, 2013, 24(3-4): 838-848. doi: 10.1016/j.gr.2013.01.006

    CrossRef Google Scholar

    [9] King S D, Ritsema J. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons [J]. Science, 2000, 290(5494): 1137-1140. doi: 10.1126/science.290.5494.1137

    CrossRef Google Scholar

    [10] Liao J, Gerya T. Influence of lithospheric mantle stratification on craton extension: Insight from two-dimensional thermo-mechanical modeling [J]. Tectonophysics, 2014, 631: 50-64. doi: 10.1016/j.tecto.2014.01.020

    CrossRef Google Scholar

    [11] Yang S H, Li Z H, Gerya T, et al. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet [J]. Tectonophysics, 2018, 746: 212-228. doi: 10.1016/j.tecto.2017.07.018

    CrossRef Google Scholar

    [12] van Avendonk H J A, Holbrook W S, Lizarralde D, et al. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q06009.

    Google Scholar

    [13] Contreras-Reyes E, Grevemeyer I, Watts A B, et al. Deep seismic structure of the Tonga subduction zone: Implications for mantle hydration, tectonic erosion, and arc magmatism [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B10): B10103. doi: 10.1029/2011JB008434

    CrossRef Google Scholar

    [14] Fumagalli P, Stixrude L, Poli S, et al. The 10Å phase: A high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere [J]. Earth & Planetary Science Letters, 2001, 186(2): 125-141.

    Google Scholar

    [15] Irifune T, Kubo N, Isshiki M, et al. Phase transformations in serpentine and transportation of water into the lower mantle [J]. Geophysical Research Letters, 1998, 25(2): 203-206. doi: 10.1029/97GL03572

    CrossRef Google Scholar

    [16] Ranero C R, Weinrebe W, Grevemeyer I, et al. Tectonic structure of the Middle America Pacific margin and incoming Cocos Plate from Costa Rica to Guatemala[C]//American Geophysical Union, Fall Meeting 2003. AGU, 2003.

    Google Scholar

    [17] Sano A, Ohtani E, Kubo T, et al. Effect of water on garnet-perovskite phase transformation in MORB system[C]//American Geophysical Union, Fall Meeting 2004. AGU, 2004.

    Google Scholar

    [18] Li Z H, Xu Z Q, Gerya T V. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones [J]. Earth & Planetary Science Letters, 2011, 301(1-2): 65-77.

    Google Scholar

    [19] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth & Planetary Science Letters, 1990, 99(1-2): 79-93.

    Google Scholar

    [20] d’Acremont E, Leroy S, Burov E B. Numerical modelling of a mantle plume: the plume head-lithosphere interaction in the formation of an oceanic large igneous province [J]. Earth and Planetary Science Letters, 2003, 206(3-4): 379-396. doi: 10.1016/S0012-821X(02)01058-0

    CrossRef Google Scholar

    [21] Pekeris C L. Thermal convection in the interior of the earth [J]. Geophysical Journal, 1935, 3(8): 343-367.

    Google Scholar

    [22] Flament N, Gurnis M, Müller R D. A review of observations and models of dynamic topography [J]. Lithosphere, 2013, 5(2): 189-210. doi: 10.1130/L245.1

    CrossRef Google Scholar

    [23] Duretz T, Gerya T V. Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination [J]. Tectonophysics, 2013, 602: 124-140. doi: 10.1016/j.tecto.2012.12.024

    CrossRef Google Scholar

    [24] Gerya T V, Yuen D A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones [J]. Earth & Planetary Science Letters, 2003, 212(1-2): 47-62.

    Google Scholar

    [25] Gerya T V, Yuen D A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems [J]. Physics of the Earth and Planetary Interiors, 2007, 163(1-4): 83-105. doi: 10.1016/j.pepi.2007.04.015

    CrossRef Google Scholar

    [26] Vogt K, Gerya T V, Castro A. Crustal growth at active continental margins: Numerical modeling [J]. Physics of the Earth and Planetary Interiors, 2012, 192-193: 1-20. doi: 10.1016/j.pepi.2011.12.003

    CrossRef Google Scholar

    [27] Gerya T. Future directions in subduction modeling [J]. Journal of Geodynamics, 2011, 52(5): 344-378. doi: 10.1016/j.jog.2011.06.005

    CrossRef Google Scholar

    [28] Toussaint G, Burov E, Jolivet L. Continental plate collision: Unstable vs. stable slab dynamics [J]. Geology, 2004, 32(1): 33-36. doi: 10.1130/G19883.1

    CrossRef Google Scholar

    [29] Gorczyk W, Willner A P, Gerya T V, et al. Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling [J]. Physics of the Earth and Planetary Interiors, 2007, 163(1-4): 209-232. doi: 10.1016/j.pepi.2007.05.010

    CrossRef Google Scholar

    [30] Gerya T V, Meilick F I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts [J]. Journal of Metamorphic Geology, 2011, 29(1): 7-31. doi: 10.1111/j.1525-1314.2010.00904.x

    CrossRef Google Scholar

    [31] Li Z H, Gerya TV. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China [J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B9): B09406.

    Google Scholar

    [32] Liao J, Wang Q, Gerya T, et al. Modeling craton destruction by hydration-induced weakening of the upper mantle [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 7449-7466. doi: 10.1002/2017JB014157

    CrossRef Google Scholar

    [33] Manglik A, Singh R N. Rheological stratification of the Indian continental lithosphere: Role of diffusion creep [J]. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 1999, 108(1): 15-21.

    Google Scholar

    [34] Gerya T V, Stöckhert B, Perchuk A L. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation [J]. Tectonics, 2002, 21(6): 6-1-6-19.

    Google Scholar

    [35] Kirby S H, Kronenberg A K. Rheology of the lithosphere: selected topics [J]. Reviews of Geophysics, 1987, 25(6): 1219-1244. doi: 10.1029/RG025i006p01219

    CrossRef Google Scholar

    [36] Kirby S H. Rheology of the lithosphere [J]. Reviews of Geophysics, 1983, 21(6): 1458-1487. doi: 10.1029/RG021i006p01458

    CrossRef Google Scholar

    [37] Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9

    CrossRef Google Scholar

    [38] Ranalli G. Rheology of the Earth[M]. 2nd ed. Netherlands: Springer, 1995.

    Google Scholar

    [39] Burg J P, Gerya T V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps [J]. Journal of Metamorphic Geology, 2005, 23(2): 75-95. doi: 10.1111/j.1525-1314.2005.00563.x

    CrossRef Google Scholar

    [40] Li Z H, Gerya T V, Burg J P. Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: thermomechanical modelling [J]. Journal of Metamorphic Geology, 2010, 28(3): 227-247. doi: 10.1111/j.1525-1314.2009.00864.x

    CrossRef Google Scholar

    [41] Li Z H, Xu Z Q, Gerya T, et al. Collision of continental corner from 3-D numerical modeling [J]. Earth and Planetary Science Letters, 2013, 380: 98-111. doi: 10.1016/j.jpgl.2013.08.034

    CrossRef Google Scholar

    [42] Turcotte B, Schubert J. Geodynamics [J]. Geological curtain: English version, 2002, 450(2): 136-136.

    Google Scholar

    [43] Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006

    CrossRef Google Scholar

    [44] Huangfu P P, Wang Y J, Cawood P A, et al. Thermo-mechanical controls of flat subduction: insights from numerical modeling [J]. Gondwana Research, 2016, 40: 170-183. doi: 10.1016/j.gr.2016.08.012

    CrossRef Google Scholar

    [45] Schmeling H, Babeyko A Y, Ennsa A, et al. A benchmark comparison of spontaneous subduction models-Towards a free surface [J]. Physics of the Earth and Planetary Interiors, 2008, 171(1-4): 198-223. doi: 10.1016/j.pepi.2008.06.028

    CrossRef Google Scholar

    [46] Larsen T B, Yeun D A. Fast plumeheads: Temperature-dependent versus non-Newtonian rheology [J]. Geophysical Research Letters, 1997, 24(16): 1995-1998. doi: 10.1029/97GL01886

    CrossRef Google Scholar

    [47] Manga M, Stone H A, O'Connell R J. The interaction of plume heads with compositional discontinuities in the Earth's mantle [J]. Journal of Geophysical Research, 1993, 98(B11): 19979-19990. doi: 10.1029/93JB00441

    CrossRef Google Scholar

    [48] Van Keken P. Evolution of starting mantle plumes: A comparison between numerical and laboratory models [J]. Earth & Planetary Science Letters, 1997, 148(1-2): 1-11.

    Google Scholar

    [49] Burov E, Guillou-Frottier L. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere [J]. Geophysical Journal International, 2005, 161(2): 469-490. doi: 10.1111/j.1365-246X.2005.02588.x

    CrossRef Google Scholar

    [50] 郭慧丽, 徐佩芬, 张福勤. 华北克拉通及东邻西太平洋活动大陆边缘地区的P波速度结构: 对岩石圈减薄动力学过程的探讨[J]. 地球物理学报, 2014, 57(7):2352-2361 doi: 10.6038/cjg20140729

    CrossRef Google Scholar

    GUO Huili, XU Peifen, ZHANG Fuqin. P wave velocity structure of the North China Craton and West Pacific active continental margin: exploration for dynamic processes of lithospheric thinning [J]. Chinese Journal of Geophysics, 2014, 57(7): 2352-2361. doi: 10.6038/cjg20140729

    CrossRef Google Scholar

    [51] 李三忠, 索艳慧, 李玺瑶, 等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J]. 科学通报, 2018, 63(16):1550-1593

    Google Scholar

    LI Sanzhong, SUO Yanhui, LI Xiyao, et al. Mesozoic Plate Subduction in West Pacific and Tectono-magmatic Response in the East Asian Ocean-Continent Connection Zone [J]. Chinese Science Bulletin, 2018, 63(16): 1550-1593.

    Google Scholar

    [52] Yu S Y, Li S Z, Zhang J X, et al. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China [J]. Earth-Science Reviews, 2019, 191: 190-211. doi: 10.1016/j.earscirev.2019.02.016

    CrossRef Google Scholar

    [53] Yu S Y, Zhang J X, Li S Z, et al. TTG-Adakitic-like (Tonalitic-Trondhjemitic) magmas resulting from partial melting of Metagabbro under high-pressure condition during continental collision in the North Qaidam UHP Terrane, Western China [J]. Tectonics, 2019, 38(3): 791-822. doi: 10.1029/2018TC005259

    CrossRef Google Scholar

    [54] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682

    Google Scholar

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682.

    Google Scholar

    [55] Liu S F, Nummedal D, Gurnis M. Dynamic versus flexural controls of Late Cretaceous Western Interior Basin, USA [J]. Earth & Planetary Science Letters, 2014, 389: 221-229.

    Google Scholar

    [56] Liu L J, Spasojević S, Gurnis M. Reconstructing Farallon plate subduction Beneath North America back to the Late Cretaceous [J]. Science, 2008, 322(5903): 934-938. doi: 10.1126/science.1162921

    CrossRef Google Scholar

    [57] 刘少峰, 王成善. 构造古地理重建与动力地形[J]. 地学前缘, 2016, 23(6):61-79

    Google Scholar

    LIU Shaofeng, WANG Chengshan. Reconstruction of tectono-paleogeography and dynamic topography [J]. Earth Science Frontiers, 2016, 23(6): 61-79.

    Google Scholar

    [58] Burov E, Gerya T. Asymmetric three-dimensional topography over mantle plumes [J]. Nature, 2014, 513(7516): 85-89. doi: 10.1038/nature13703

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(3587) PDF downloads(165) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint