Citation: | QIN Like, WANG Qi, DUAN Xiaotong, GUO Bin, PANG Lei, BAI Yan. Investigation and stability analysis of cracks of the K21 external pit fissures in the Hanyang Mausoleum[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 137-146. doi: 10.16030/j.cnki.issn.1000-3665.202210024 |
Located in the city of Xianyang in Shaanxi Province, the Hanyang Mausoleum is the first fully closed underground museum in China and in the world. The fissure disease of its outer pit is developing, which seriously endangers the safety of the pit wall and the pit bottom cultural relics, and it is urgent to protect and strengthen the pit. In the past, more was learned about the disease and prevention of the ruins in the open air and semi-closed environment, while the completely closed environment was seldom examined. This paper takes the outer pit K21 of the Hanyang Mausoleum as the research object. The number and distribution characteristics of cracks are determined through field investigation. On this basis, the causes of cracks are studied and classified. The stability of pit wall and its influencing factors are analyzed by numerical simulation methods. The research results show that there are 53 cracks in the K21 outer pit, mainly occurring on the south and north sides of the surface and the pit wall. The surface longitudinal cracks are unloading cracks, the surface transverse cracks are dry shrinkage cracks, and the pit wall cracks are mainly structural cracks. The longitudinal unloading crack is the main reason for the reduction of pit wall stability. The earthquake, artificial load or the further development of cracks will lead to the pit wall to be unstable. It is recommended to use anchor bolts to reinforce the pit wall, and reset and pre-tighten the unloading cracks by applying prestress. This study is of important guiding significance for the investigation and protection of the fissure disease in the museum sites.
[1] |
孙满利,陈彦榕,沈云霞. 土遗址病害研究新进展与展望[J]. 敦煌研究,2022(2):136 − 148. [SUN Manli,CHEN Yanrong,SHEN Yunxia. New progress and prospects in research on earthen site deterioration[J]. Dunhuang Research,2022(2):136 − 148. (in Chinese with English abstract)
|
[2] |
孙华. 遗址博物馆的特点与规建[J]. 东南文化,2022(4):14 − 24. [SUN Hua. The characteristics of heritage site museums and their planning and constructions[J]. Southeast Culture,2022(4):14 − 24. (in Chinese with English abstract)
|
[3] |
孔利宁. 考古博物馆的缘起与演进[J]. 文博,2018(2):100 − 105. [KONG Lining. The origination and evolution of archaeological museum[J]. Relics and Museolgy,2018(2):100 − 105. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7954.2018.02.016
|
[4] |
黄四平,高衡. 密闭环境下地下水分变化对唐皇城墙含光门土遗址的影响研究[J]. 文物保护与考古科学,2022,34(4):97 − 104. [HUANG Siping,GAO Heng. Study of the influence of groundwater changes on the earthen site of Xi’an Tang Hanguang Gate Museum in a closed environment[J]. Sciences of Conservation and Archaeology,2022,34(4):97 − 104. (in Chinese with English abstract)
|
[5] | LERCARI N. Monitoring earthen archaeological heritage using multi-temporal terrestrial laser scanning and surface change detection[J]. Journal of Cultural Heritage,2019,39:152 − 165. doi: 10.1016/j.culher.2019.04.005 |
[6] | FUJII Y,FODDE E,WATANABE K,et al. Digital photogrammetry for the documentation of structural damage in earthen archaeological sites:The case of Ajina Tepa,Tajikistan[J]. Engineering Geology,2009,105(1/2):124 − 133. |
[7] |
周鹏,胡明珠,王逢睿,等. 哈密境内烽燧土遗址破坏类型及成因分析[J]. 工程勘察,2015,43(10):25 − 28. [ZHOU Peng,HU Mingzhu,WANG Fengrui,et al. The damage type and cause analysis of the beacon relics in Hami[J]. Geotechnical Investigation & Surveying,2015,43(10):25 − 28. (in Chinese with English abstract)
|
[8] |
王思嘉. 博物馆环境下土遗址气—液相变补水的可行性研究[D]. 杭州:浙江大学,2017. [WANG Sijia. Study on the feasibility of replenishment for soil sites in museum environment by phase transition of water[D]. Hangzhou:Zhejiang University,2017. (in Chinese with English abstract)
|
[9] |
张平,陈志龙,李居西. 汉阳陵帝陵地下遗址博物馆建筑设计探析[J]. 工业建筑,2008,38(7):120 − 123. [ZHANG Ping,CHEN Zhilong,LI Juxi. Study on the design of museum architecture of Yang Ling of the Han dynasty relics of underground[J]. Industrial Construction,2008,38(7):120 − 123. (in Chinese with English abstract) doi: 10.13204/j.gyjz2008.07.006
|
[10] |
黄姣. 汉阳陵土遗址保存现状调查研究[D]. 西安:西北大学,2017. [HUANG Jiao. Investigation and study on the preservation of earthen sites in hanyangling[D]. Xi’an:Northwest University,2017. (in Chinese with English abstract)
|
[11] |
焦南峰. 汉阳陵从葬坑初探[J]. 文物,2006(7):51 − 57. [JIAO Nanfeng. A preliminary study on the burial pit of Hanyang mausoleum[J]. Cultural Relics,2006(7):51 − 57. (in Chinese) doi: 10.13619/j.cnki.cn11-1532/k.2006.07.005
|
[12] |
刘克成,肖莉. 汉阳陵帝陵外藏坑保护展示厅[J]. 建筑学报,2006(7):68 − 70. [LIU Kecheng,XIAO Li. Protective exhibition hall for the outer burial pits of emperor mausoleum in Yangling of the Han dynasty[J]. Architectural Journal,2006(7):68 − 70. (in Chinese with English abstract) doi: 10.3969/j.issn.0529-1399.2006.07.020
|
[13] |
李莹莹. 汉阳陵遗址展示厅的气密性和土壤环境及其对文物的影响[D]. 北京:中国科学院大学,2010. [LI Yingying. Air tightness and soil environment of the exhibition hall of Hanyang mausoleum site and its influence on cultural relics[D]. Beijing:University of Chinese Academy of Sciences,2010. (in Chinese with English abstract)
|
[14] |
焦南峰,王保平,马永赢,等. 汉阳陵帝陵东侧11~21号外藏坑发掘简报[J]. 考古与文物,2008(3):3 − 32. [JIAO Nanfeng,WANG Baoping,MA Yongying,et al. Brief report on excavation of No. 11 ~ No. 21 outer pit on the east side of Hanyang mausoleum[J]. Archaeology and Cultural Relics,2008(3):3 − 32. (in Chinese) doi: 10.3969/j.issn.1000-7830.2008.03.001
|
[15] |
赵丹旗,付昱凯,侯晓坤,等. 不同应力路径下饱和重塑黄土的力学特性[J]. 水文地质工程地质,2022,49(6):74 − 80. [ZHAO Danqi,FU Yukai,HOU Xiaokun,et al. Mechanical properties of saturated remolded loess under different stress paths[J]. Hydrogeology & Engineering Geology,2022,49(6):74 − 80. (in Chinese with English abstract)
|
[16] |
孙书勤,裴向军,袁广,等. 饱和黄土卸载特性影响因素研究[J]. 水文地质工程地质,2018,45(2):59 − 63. [SUN Shuqin,PEI Xiangjun,YUAN Guang,et al. Influencing factors for unloading characteristics of saturated loess[J]. Hydrogeology & Engineering Geology,2018,45(2):59 − 63. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2018.02.09
|
[17] |
黄达,黄润秋. 卸荷条件下裂隙岩体变形破坏及裂纹扩展演化的物理模型试验[J]. 岩石力学与工程学报,2010,29(3):502 − 512. [HUANG Da,HUANG Runqiu. Physical model test on deformation failure and crack propagation evolvement of fissured rocks under unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(3):502 − 512. (in Chinese with English abstract)
|
[18] |
郑达,毛峰,王沁沅,等. 上硬下软反倾边坡开挖变形响应的物理模拟[J]. 水文地质工程地质,2019,46(5):89 − 95. [ZHENG Da,MAO Feng,WANG Qinyuan,et al. Physical simulation of the excavation deformation response of counter-tilt slope with rigid layers on the soft[J]. Hydrogeology & Engineering Geology,2019,46(5):89 − 95. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.05.12
|
[19] |
胡荣兵,任光明,刘晓宇. 某水电站左岸坝基岩体卸荷松弛特征与形成机制[J]. 中国地质灾害与防治学报,2019,30(5):139 − 144. [HU Rongbing,REN Guangming,LIU Xiaoyu. Unloading relaxation characteristics and mechanism of the rockmass at left bank dam foundation of a hydropower station[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):139 − 144. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2019.05.18
|
[20] |
时俊,万磊,谭卫佳,等. 考虑土体侧向卸荷的基坑变形预测[J]. 河南科技大学学报(自然科学版),2020,41(2):61 − 66. [SHI Jun,WAN Lei,TAN Weijia,et al. Deformation prediction of excavation of lateral unloading soil[J]. Journal of Henan University of Science and Technology (Natural Science),2020,41(2):61 − 66. (in Chinese with English abstract)
|
[21] |
容波. 秦俑一号坑土遗址裂隙观测研究初报[C]//李最雄,王旭东. 2008古遗址保护国际学术讨论会暨国际岩石力学学会区域研讨会论文集,北京:科学出版社,2008. [RONG Bo. Preliminary report on the observation and research of fissures at the No. 1 pit site of the Qin Warriors[C]//LI Zuixiong,WANG Xudong. Proceedings of the 2008 International Symposium on Ancient Site Conservation and the Regional Symposium of the International Society of Rock Mechanics,Beijing:Science Press,2008. (in Chinese)
|
[22] |
宋京雷,何伟,郝社锋,等. 岩质边坡表层黏性客土抗裂特性试验研究[J]. 水文地质工程地质,2021,48(3):144 − 149. [SONG Jinglei,HE Wei,HAO Shefeng,et al. An experimental study of the anti-cracking characteristics of foreign-clay based on rock slope[J]. Hydrogeology & Engineering Geology,2021,48(3):144 − 149. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202008025
|
[23] |
孙强,龚绪龙,张玉良,等. 黏土失水干缩裂缝发育动态试验研究[J]. 水文地质工程地质,2014,41(5):144 − 147. [SUN Qiang,GONG Xulong,ZHANG Yuliang,et al. A study of the dynamic experimental of clay desiccation cracking process[J]. Hydrogeology & Engineering Geology,2014,41(5):144 − 147. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.05.051
|
[24] |
唐朝生,施斌,崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报,2018,40(8):1415 − 1423. [TANG Chaosheng,SHI Bin,CUI Yujun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering,2018,40(8):1415 − 1423. (in Chinese with English abstract) doi: 10.11779/CJGE201808006
|
[25] |
唐朝生,施斌,顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报,2011,19(6):875 − 881. [TANG Chaosheng,SHI Bin,GU Kai. Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology,2011,19(6):875 − 881. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.06.012
|
[26] |
卢全中,彭建兵,陈志新,等. 黄土高原地区黄土裂隙发育特征及其规律研究[J]. 水土保持学报,2005,19(5):191 − 194. [LU Quanzhong,PENG Jianbing,CHEN Zhixin,et al. Research on characteristics of cracks and fissures of loess and their distribution in loess plateau of China[J]. Journal of Soil Water Conservation,2005,19(5):191 − 194. (in Chinese with English abstract) doi: 10.3321/j.issn:1009-2242.2005.05.048
|
[27] | ZIENKIEWICZ O C,HUMPHESON C,LEWIS R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Géotechnique,1975,25(4):671 − 689. |
[28] | MATSUI T,SAN K C. Finite element slope stability analysis by shear strength reduction technique[J]. Soils and Foundations,1992,32(1):59 − 70. doi: 10.3208/sandf1972.32.59 |
[29] |
中华人民共和国建设部. 建筑边坡工程技术规范:GB/T 50330—2013[S]. 北京:中国建筑工业出版社,2013. [Ministry of Construction of the People’s Republic of China. Technical code for building slope engineering:GB/T 50330—2013[S]. Beijing:China Construction Industry Press,2013. (in Chinese)
|
[30] | NOURI H,FAKHER A,JONES C J F P. Development of Horizontal Slice Method for seismic stability analysis of reinforced slopes and walls[J]. Geotextiles and Geomembranes,2006,24(3):175 − 187. doi: 10.1016/j.geotexmem.2005.11.004 |
[31] | NOURI H,FAKHER A,JONES C J F P. Evaluating the effects of the magnitude and amplification of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium Horizontal Slices Method[J]. Geotextiles and Geomembranes,2008,26(3):263 − 278. doi: 10.1016/j.geotexmem.2007.09.002 |
[32] |
中华人民共和国建设部. 建筑结构荷载规范:GB/T 50009—2012[S]. 北京:中国建筑工业出版社,2013. [Ministry of Construction of the People’s Republic of China. Load Code for Building Structures:GB/T 50009—2012[S]. Beijing:China Construction Industry Press,2012. (in Chinese)
|
[33] |
孙满利,李最雄,王旭东,等. 南竹加筋复合锚杆加固土遗址研究[J]. 岩石力学与工程学报,2008,27(增刊2):3381 − 3385. [SUN Manli,LI Zuixiong,WANG Xudong,et al. Study on reinforcement of earthen sites by bamboo-steel composite anchor[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Sup 2):3381 − 3385. (in Chinese with English abstract)
|
[34] |
石玉成,秋仁东. 木质锚杆加固土遗址边坡的稳定性分析[J]. 地震工程学报,2015,37(3):809 − 815. [SHI Yucheng,QIU Rendong. Stability analysis of earthen slope sites reinforced with wood anchors[J]. China Earthquake Engineering Journal,2015,37(3):809 − 815. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2015.03.0809
|
Surface plane crack
Plan of the Hanyang Mausoleum
Fissures distribution in the south and north surface plane
Distribution of fractures on the north facade
Distribution of fractures on the south facade
Fracture distribution of the east and west facades
Schematic diagrams of the unloading crack
Mohr circle of stress
Formation and development of dry shrinkage cracking (adapted from Ref. [24])
Schematic diagram of pit wall soil cracking
Calculation model of outer storage pit
Shear strain under natural condition
Shear strain under seismic action
Shear strain under live load
Failure mode of instability
Shear strain after reinforcement