2023 Vol. 50, No. 6
Article Contents

WANG Dawei, WANG Zhiliang, WANG Shumin. Numerical study of tunnel blasting parameter optimization and vibration damage based on the RHT constitutive model[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 129-136. doi: 10.16030/j.cnki.issn.1000-3665.202210009
Citation: WANG Dawei, WANG Zhiliang, WANG Shumin. Numerical study of tunnel blasting parameter optimization and vibration damage based on the RHT constitutive model[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 129-136. doi: 10.16030/j.cnki.issn.1000-3665.202210009

Numerical study of tunnel blasting parameter optimization and vibration damage based on the RHT constitutive model

More Information
  • To solve the optimization problem of blasting parameters and consider the influence of interaction between blastholes on the spatial distribution of surrounding rock damage, the Riedel-Hiermaier-Thoma constitutive model parameters of marble were first calibrated from numerical trial calculation and impact test. Then, the blasting excavation of a tunnel in full section was numerically simulated, and the evolution process of blasting damage of surrounding rocks under the interaction of multiple boreholes was investigated. Finally, the blasting parameters were optimized based on the three methods of initiation sequence, radial uncoupling coefficient and segmented interval charge, and the particle vibration and surrounding rock damage were further analyzed. The results show that the obtained constitutive parameters accurately describe the dynamic stress-strain response of the marble, and the simulated results can well reveal the evolution law of blasting damage. The rock damage develops outward from the blasthole center, and then the damage is connected and coalesced along the borehole connection line. Compared with the aforementioned other two methods, when the radial uncoupling coefficient k is less than 1.33, the blast damage of surrounding rock can be effectively reduced by changing the k value on the premise of ensuring the blasting effect. The average vibration velocity in the vertical direction of tunnel is greater than that in the horizontal direction, and the apex of arch and the middle of floor in this direction are more sensitive to blasting vibration. The research results in this study can provide reference for optimum selection of blasting parameters and accurate evaluation of surrounding rock damage in practical engineering.

  • 加载中
  • [1] 王伟祥,王志亮,贾帅龙,等. 动态载荷下大理岩断口形貌特征试验研究[J]. 水文地质工程地质,2022,49(3):118 − 124. [WANG Weixiang,WANG Zhiliang,JIA Shuailong,et al. An experimental study of the fracture morphology of marble under dynamic loading[J]. Hydrogeology & Engineering Geology,2022,49(3):118 − 124. (in Chinese with English abstract)

    Google Scholar

    WANG Weixiang, WANG Zhiliang, JIA Shuailong, et al. An experimental study of the fracture morphology of marble under dynamic loading[J]. Hydrogeology & Engineering Geology, 2022, 493): 118124. (in Chinese with English abstract)

    Google Scholar

    [2] 吴运杰. 高地应力隧道岩爆破坏机理及硐室稳定性研究[D]. 北京:北京交通大学,2019. [WU Yunjie. Study on rock burst failure mechanism and chamber stability of high geostress tunnel[D]. Beijing:Beijing Jiaotong University,2019. (in Chinese with English abstract)

    Google Scholar

    WU Yunjie. Study on rock burst failure mechanism and chamber stability of high geostress tunnel[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese with English abstract)

    Google Scholar

    [3] 钟靖涛,王志亮,田诺成. 花岗岩循环爆破振动衰减规律与损伤演化机理试验[J]. 水文地质工程地质,2019,46(3):101 − 107. [ZHONG Jingtao,WANG Zhiliang,TIAN Nuocheng. An experiment of attenuation law of vibration and evolution mechanism of damage of granite under cyclic blasting[J]. Hydrogeology & Engineering Geology,2019,46(3):101 − 107. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.03.14

    CrossRef Google Scholar

    ZHONG Jingtao, WANG Zhiliang, TIAN Nuocheng. An experiment of attenuation law of vibration and evolution mechanism of damage of granite under cyclic blasting[J]. Hydrogeology & Engineering Geology, 2019, 463): 101107. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.03.14

    CrossRef Google Scholar

    [4] 姜守国, 罗帅兵, 蒋楠, 等. 深埋层状围岩引水隧洞直眼掏槽爆破技术优化[J]. 地质科技通报,2023,42(5):20 − 26. [JIANG Shouguo, LUO Shuaibing, JIANG Nan, et al. Optimization of direct-hole cutting blasting technology for deep-buried layered surrounding rock diversion tunnels[J]. Bulletin of Geological Science and Technology,2023,42(5):20 − 26.(in Chinese with English abstract)

    Google Scholar

    JIANG Shouguo, LUO Shuaibing, JIANG Nan, et al. Optimization of direct-hole cutting blasting technology for deep-buried layered surrounding rock diversion tunnels[J]. Bulletin of Geological Science and Technology, 2023, 425): 2026.(in Chinese with English abstract)

    Google Scholar

    [5] 王子琛,李祥龙,王惠芬,等. 基于正交设计模拟实验的预裂爆破参数优化方法研究[J]. 有色金属工程,2021,11(5):96 − 101. [WANG Zichen,LI Xianglong,WANG Huifen,et al. Study on optimization method of pre-splitting blasting parameters based on orthogonal design simulation experiment[J]. Nonferrous Metals Engineering,2021,11(5):96 − 101. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-1744.2021.05.015

    CrossRef Google Scholar

    WANG Zichen, LI Xianglong, WANG Huifen, et al. Study on optimization method of pre-splitting blasting parameters based on orthogonal design simulation experiment[J]. Nonferrous Metals Engineering, 2021, 115): 96101. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-1744.2021.05.015

    CrossRef Google Scholar

    [6] 刘优平,龚敏,黄刚海. 深孔爆破装药结构优选数值分析方法及其应用[J]. 岩土力学,2012,33(6):1883 − 1888. [LIU Youping,GONG Min,HUANG Ganghai. Numerical analysis method for optimizing charging structure of deep-hole blasting and its application[J]. Rock and Soil Mechanics,2012,33(6):1883 − 1888. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.06.043

    CrossRef Google Scholar

    LIU Youping, GONG Min, HUANG Ganghai. Numerical analysis method for optimizing charging structure of deep-hole blasting and its application[J]. Rock and Soil Mechanics, 2012, 336): 18831888. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.06.043

    CrossRef Google Scholar

    [7] 杨跃宗,邵珠山,熊小锋,等. 岩石爆破中径向和轴向不耦合装药的对比分析[J]. 爆破,2018,35(4):26 − 33. [YANG Yuezong,SHAO Zhushan,XIONG Xiaofeng,et al. Comparison of radial and axial uncoupled charge in rock blasting[J]. Blasting,2018,35(4):26 − 33. (in Chinese with English abstract) doi: 10.3963/j.issn.1001-487X.2018.04.005

    CrossRef Google Scholar

    YANG Yuezong, SHAO Zhushan, XIONG Xiaofeng, et al. Comparison of radial and axial uncoupled charge in rock blasting[J]. Blasting, 2018, 354): 2633. (in Chinese with English abstract) doi: 10.3963/j.issn.1001-487X.2018.04.005

    CrossRef Google Scholar

    [8] 殷锦训,王维,游喻豪,等. 湖北三鑫金铜矿扇形中深孔爆破参数优化数值模拟研究[J]. 爆破,2022,39(2):85 − 93. [YIN Jinxun,WANG Wei,YOU Yuhao,et al. Numerical simulation of Sanxin gold and copper mine in Hubei Province blasting parameters[J]. Blasting,2022,39(2):85 − 93. (in Chinese with English abstract) doi: 10.3963/j.issn.1001-487X.2022.02.013

    CrossRef Google Scholar

    YIN Jinxun, WANG Wei, YOU Yuhao, et al. Numerical simulation of Sanxin gold and copper mine in Hubei Province blasting parameters[J]. Blasting, 2022, 392): 8593. (in Chinese with English abstract) doi: 10.3963/j.issn.1001-487X.2022.02.013

    CrossRef Google Scholar

    [9] HE Meng,HU Yehong,CHEN Jin,et al. Numerical simulation study on parameter optimization of time sequential controlled blasting[J]. Shock and Vibration,2022,2022:1 − 12.

    Google Scholar

    [10] YANG Jianhua,LU Wenbo,HU Yingguo,et al. Numerical simulation of rock mass damage evolution during deep-buried tunnel excavation by drill and blast[J]. Rock Mechanics and Rock Engineering,2015,48(5):2045 − 2059. doi: 10.1007/s00603-014-0663-0

    CrossRef Google Scholar

    [11] 王海亮,高尚,张海义. 高地应力岩石双孔爆破损伤演化研究[J]. 工程爆破,2022,28(2):1 − 6. [WANG Hailiang,GAO Shang,ZHANG Haiyi. Research on damage evolution of rock caused by double-hole blasting under high in situ stress[J]. Engineering Blasting,2022,28(2):1 − 6. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7051.2022.2.gcbp202202002

    CrossRef Google Scholar

    WANG Hailiang, GAO Shang, ZHANG Haiyi. Research on damage evolution of rock caused by double-hole blasting under high in situ stress[J]. Engineering Blasting, 2022, 282): 16. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7051.2022.2.gcbp202202002

    CrossRef Google Scholar

    [12] HOLMQUIST T,JOHNSON G R. A computational constitutive model for glass subjected to large strains,high strain rates and high pressures[J]. Journal of Applied Mechanics,2011,78:051003. doi: 10.1115/1.4004326

    CrossRef Google Scholar

    [13] BORRVALL T,RIEDEL W. The RHT concrete model in LS-DYNA[C]//Proceedings of the 8th European LS-DYNA users conference. Strasbourg,2011.

    Google Scholar

    [14] WANG Zhiliang,WANG Haochen,WANG Jianguo,et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks[J]. Computers and Geotechnics,2021,135:104172. doi: 10.1016/j.compgeo.2021.104172

    CrossRef Google Scholar

    [15] 李洪超,刘殿书,赵磊,等. 大理岩RHT模型参数确定研究[J]. 北京理工大学学报,2017,37(8):801 − 806. [LI Hongchao,LIU Dianshu,ZHAO Lei,et al. Study on parameters determination of marble RHT model[J]. Transactions of Beijing Institute of Technology,2017,37(8):801 − 806. (in Chinese with English abstract) doi: 10.15918/j.tbit1001-0645.2017.08.006

    CrossRef Google Scholar

    LI Hongchao, LIU Dianshu, ZHAO Lei, et al. Study on parameters determination of marble RHT model[J]. Transactions of Beijing Institute of Technology, 2017, 378): 801806. (in Chinese with English abstract) doi: 10.15918/j.tbit1001-0645.2017.08.006

    CrossRef Google Scholar

    [16] 李傲,王志亮,封陈晨,等. 动态冲击下锦屏大理岩力学响应与能量特性[J]. 水文地质工程地质,2022,49(5):112 − 118. [LI Ao,WANG Zhiliang,FENG Chenchen,et al. Mechanical response and energy characteristics of Jinping marble under dynamic impact[J]. Hydrogeology & Engineering Geology,2022,49(5):112 − 118. (in Chinese)

    Google Scholar

    LI Ao, WANG Zhiliang, FENG Chenchen, et al. Mechanical response and energy characteristics of Jinping marble under dynamic impact[J]. Hydrogeology & Engineering Geology, 2022, 495): 112118. (in Chinese).

    Google Scholar

    [17] WANG Jianxiu,YIN Yao,LUO Chuanwen. Johnson–holmquist-II(JH-2) constitutive model for rock materials:parameter determination and application in tunnel smooth blasting[J]. Applied Sciences,2018,8(9):1675. doi: 10.3390/app8091675

    CrossRef Google Scholar

    [18] 戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算[J]. 辽宁工程技术大学学报(自然科学版),2001,20(2):144 − 147. [DAI Jun. Calculation of radii of the broken and cracked areas in rock by a long charge explosion[J]. Journal of Liaoning Technical University (Natural Science Edition),2001,20(2):144 − 147. (in Chinese with English abstract)

    Google Scholar

    DAI Jun. Calculation of radii of the broken and cracked areas in rock by a long charge explosion[J]. Journal of Liaoning Technical University (Natural Science Edition), 2001, 202): 144147. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(280) PDF downloads(23) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint