Citation: | ZHANG Buping, ZHU Xinghua, SUN Hengfei, CAI Jiale, CHENG Xi. A model experimental study of the formation mechanism of internal erosion caves in fractured loess[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 158-167. doi: 10.16030/j.cnki.issn.1000-3665.202209052 |
The formation mechanism of caves in fissured loess at the edge of the loess platform plateau is complex and is closely related to the occurrence of geological hazards such as landslides, which pose a serious threat to the production and life of people in this region. To address the scientific problem of how internal erosion caves are formed in the fissured loess, four sets of experiments on the formation mechanism of internal erosion caves in loess under different initial fissure opening conditions are carried out using the visualisation of the internal erosion caves formation mechanism model of the fissured loess in the South Plateau of Jingyang as a reference. The results show that the development process from the fractured loess to the internal erosion of caves under water flowing erosion can be divided into three stages, including the hydraulic erosion stage, the infiltration and erosion stage and the gravity collapse stage. The formation mechanism of the internal erosion caves in the fractured loess can be summarized as follows: Softening and sputtering, scouring and widening, erosion and cavitation, and collapsing by gravity. The development rate of seepage erosion in the fractured loess is reflected by the sediment quantity and transport characteristics, which can be divided into the rapid erosion stage, the fluctuation reduction stage and the slow and stable erosion stage. The fracture opening, the erodibility of loess and the ultimate groove depth are important factors affecting the formation of internal erosion caves in the fractured loess. The research results provide theoretical support to further reveal the disaster-causing effects of loess internal erosion.
[1] |
王景明,倪玉兰,孙建中. 黄土构造节理研究及其应用[J]. 工程地质学报,1994,2(4):31 − 42. [WANG Jingming,NI Yulan,SUN Jianzhong. A study on structural joints in loess and its practical applications[J]. Journal of Engineering Geology,1994,2(4):31 − 42. (in Chinese with English abstract)
|
[2] |
彭建兵,李喜安,孙萍,等. 黄土洞穴的环境灾害效应[J]. 地球与环境,2005,33(4):1 − 7. [PENG Jianbing,LI Xi’an,SUN Ping,et al. Environmental and disaster effects of loess caves[J]. Geology-geochemistry,2005,33(4):1 − 7. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9250.2005.04.001
|
[3] |
彭建兵,李喜安,范文,等. 黄土高原地区黄土洞穴的分类及发育规律[J]. 地学前缘,2007,14(6):234 − 244. [PENG Jianbing,LI Xi’an,FAN Wen,et al. Classification and development pattern of caves in the loess plateau[J]. Earth Science Frontiers,2007,14(6):234 − 244. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2007.06.030
|
[4] | PENG Jianbing,SUN Ping,IGWE O,et al. Loess caves,a special kind of geo-hazard on loess plateau,northwestern China[J]. Engineering Geology,2018,236:79 − 88. doi: 10.1016/j.enggeo.2017.08.012 |
[5] |
许领,李宏杰,吴多贤. 黄土台缘滑坡地表水入渗问题分析[J]. 中国地质灾害与防治学报,2008,19(2):32 − 35. [XU Ling,LI Hongjie,WU Duoxian. Discussion on infiltration of surface water and their significance to terrace loess landslides[J]. The Chinese Journal of Geological Hazard and Control,2008,19(2):32 − 35. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2008.02.007
|
[6] |
杨华. 裂隙性黄土渗透特性试验研究[D]. 西安:长安大学,2016. [YANG Hua. Experimental study on permeability characteristics of fractured loess[D]. Xi’an:Chang’an University,2016. (in Chinese with English abstract)
|
[7] |
邹锡云,许强,彭大雷,等. 黑方台典型黄土洞穴形成的影响因素[J]. 科学技术与工程,2018,18(28):58 − 64. [ZOU Xiyun,XU Qiang,PENG Dalei,et al. Influencing factors of formation of typical loess sinkhole in Heifangtai[J]. Science Technology and Engineering,2018,18(28):58 − 64. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2018.28.007
|
[8] |
郑鹏飞,胡江洋,刘晓京. 黄土边坡落水洞的形成演化机理研究[J]. 灾害学,2019,34(增刊1):224 − 227. [ZHENG Pengfei,HU Jiangyang,LIU Xiaojing. Formation and evolution mechanism of waterfall tunnel on loess slope[J]. Journal of Catastrophology,2019,34(Sup 1):224 − 227. (in Chinese with English abstract)
|
[9] |
孔嘉旭,庄建琦,彭建兵,等. 兰州老狼沟黄土微地貌灾害链时空分布特征与危险性模拟研究[J]. 工程地质学报,2021,29(5):1401 − 1415. [KONG Jiaxu,ZHUANG Jianqi,PENG Jianbing,et al. Spatial and temporal distribution characteristics and risk simulation of loess micro geomorphic disaster chain in Laolang gully,Lanzhou[J]. Journal of Engineering Geology,2021,29(5):1401 − 1415. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2021-0435
|
[10] |
彭建兵,兰恒星,钱会,等. 宜居黄河科学构想[J]. 工程地质学报,2020,28(2):189 − 201. [PENG Jianbing,LAN Hengxing,QIAN Hui,et al. Scientific research framework of livable Yellow River[J]. Journal of Engineering Geology,2020,28(2):189 − 201. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2020-129
|
[11] |
彭建兵,吴迪,段钊,等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报,2016,51(5):971 − 980. [PENG Jianbing,WU Di,DUAN Zhao,et al. Disaster characteristics and destructive mechanism of typical loess landslide cases triggered by human engineering activities[J]. Journal of Southwest Jiaotong University,2016,51(5):971 − 980. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2016.05.021
|
[12] |
王家鼎,许元珺,张登飞,等. 黄土振动促渗效应研究[J]. 中国科学:地球科学,2021,51(5):763 − 782. [WANG Jiading,XU Yuanjun,ZHANG Dengfei,et al. Study on the effect of loess vibration on promoting infiltration[J]. Scientia Sinica (Terrae),2021,51(5):763 − 782. (in Chinese) doi: 10.1360/SSTe-2020-0293
|
[13] | HU Sheng,QIU Haijun,WANG Ninglian,et al. The influence of loess cave development upon landslides and geomorphologic evolution:A case study from the northwest Loess Plateau,China[J]. Geomorphology,2020,359:107167. doi: 10.1016/j.geomorph.2020.107167 |
[14] |
张焱,邱海军,胡胜,等. 黄土洞穴发育条件下滑坡土体性质及其稳定性分析[J]. 自然灾害学报,2020,29(2):64 − 75. [ZHANG Yan,QIU Haijun,HU Sheng,et al. Analysis of the properties and stability of landslide soil under the development conditions of loess caves[J]. Journal of Natural Disasters,2020,29(2):64 − 75. (in Chinese with English abstract) doi: 10.13577/j.jnd.2020.0207
|
[15] |
张卜平,朱兴华,成玉祥,等. 黄土潜蚀机理及其致灾效应研究综述[J]. 中国地质灾害与防治学报,2021,32(6):41 − 52. [ZHANG Buping,ZHU Xinghua,CHENG Yuxiang,et al. A review on loess subsurface-erosion mechanism and it’s hazard effects[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):41 − 52. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.06-06
|
[16] |
罗扬. 黄土节理的强度与渗流问题研究[D]. 西安:西安建筑科技大学,2014. [LUO Yang. Study on strength and seepage of loess joints[D]. Xi’an:Xi’an University of Architecture and Technology,2014. (in Chinese with English abstract)
|
[17] |
张宇. 考虑张开度的节理发育黄土体水分场试验研究[D]. 西安:西安建筑科技大学,2020. [ZHANG Yu. Experimental study on moisture field of jointed loess considering opening degree[D]. Xi’an:Xi’an University of Architecture and Technology,2020. (in Chinese with English abstract)
|
[18] | WANG Jiading,GU Tianfeng,ZHANG Maosheng,et al. Experimental study of loess disintegration characteristics[J]. Earth Surface Processes and Landforms,2019,44(6):1317 − 1329. doi: 10.1002/esp.4575 |
[19] | WANG Li,LI Xian,LI Lincui,et al. Experimental study on the physical modeling of loess tunnel-erosion rate[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):5827 − 5840. doi: 10.1007/s10064-019-01495-1 |
[20] | WANG Li,LI Xian,ZHENG Ziyu,et al. Analysis of the slope failure mechanism a under tunnel erosion environment in the south-eastern Loess Plateau in China[J]. CATENA,2022,212:106039. doi: 10.1016/j.catena.2022.106039 |
[21] |
谷天峰,袁亮,胡炜,等. 黑方台黄土崩解性试验研究[J]. 水文地质工程地质,2017,44(4):62 − 70. [GU Tianfeng,YUAN Liang,HU Wei,et al. Experimental research on disintegration of the Heifangtai loess[J]. Hydrogeology & Engineering Geology,2017,44(4):62 − 70. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.04.10
|
[22] |
李喜安,郑惠芳,康景辉,等. 黄土地层突涌破坏机理物理模拟[J]. 西安科技大学学报,2010,30(5):560 − 564. [LI Xi’an,ZHENG Huifang,KANG Jinghui,et al. Physical simulation on the mechanism of soil-bursting failure in loess[J]. Journal of Xi’an University of Science and Technology,2010,30(5):560 − 564. (in Chinese with English abstract) doi: 10.13800/j.cnki.xakjdxxb.2010.05.015
|
[23] | LI Xi’an,WANG Li,HONG Bo,et al. Erosion characteristics of loess tunnels on the Loess Plateau:a field investigation and experimental study[J]. Earth Surface Processes and Landforms,2020,45(9):1945 − 1958. doi: 10.1002/esp.4857 |
[24] | WILSON G V. Mechanisms of ephemeral gully erosion caused by constant flow through a continuous soil-pipe[J]. Earth Surface Processes and Landforms,2009,34(14):1858 − 1866. doi: 10.1002/esp.1869 |
[25] | WILSON G. Understanding soil-pipe flow and its role in ephemeral gully erosion[J]. Hydrological Processes,2011,25(15):2354 − 2364. doi: 10.1002/hyp.7998 |
[26] | FOX G A,FELICE R G,MIDGLEY T L,et al. Laboratory soil piping and internal erosion experiments:evaluation of a soil piping model for low-compacted soils[J]. Earth Surface Processes and Landforms,2014,39(9):1137 − 1145. doi: 10.1002/esp.3508 |
[27] | WILSON G V,WELLS R,KUHNLE R,et al. Sediment detachment and transport processes associated with internal erosion of soil pipes[J]. Earth Surface Processes and Landforms,2018,43(1):45 − 63. doi: 10.1002/esp.4147 |
[28] | BERNATEK-JAKIEL A,POESEN J. Subsurface erosion by soil piping:significance and research needs[J]. Earth-Science Reviews,2018,185:1107 − 1128. doi: 10.1016/j.earscirev.2018.08.006 |
[29] | JEAN P. Soil erosion in the Anthropocene:research needs[J]. Earth Surface Processes and Landforms,2018,43(1):64 − 84. doi: 10.1002/esp.4250 |
[30] | BERNATEK-JAKIEL A,NADAL-ROMERO E. Can soil piping impact environment and society? Identifying new research gaps[J]. Earth Surface Processes and Landforms,2023,48(1):72 − 86. doi: 10.1002/esp.5431 |
[31] |
杨阳. 黄土滑坡裂缝发育特征及其对滑坡孕灾模式的影响——以泾阳南塬黄土滑坡为例[D]. 西安:长安大学,2016. [YANG Yang. Characteristics of cracks in loess landslide and its influence on landslide disaster-prone mode:A case study of loess landslide in Jingyang South Plateau[D]. Xi’an:Changan University,2016. (in Chinese with English abstract)
|
[32] | WAN C F,FELL R. Investigation of rate of erosion of soils in embankment dams[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(4):373 − 380. doi: 10.1061/(ASCE)1090-0241(2004)130:4(373) |
[33] |
王根龙,伍法权,祁生文. 悬臂-拉裂式崩塌破坏机制研究[J]. 岩土力学,2012,33(增刊2):269 − 274. [WANG Genlong,WU Faquan,QI Shengwen. Research on failure mechanisms for cantilever and tension crack-type collapse[J]. Rock and Soil Mechanics,2012,33(Sup 2):269 − 274. (in Chinese with English abstract)
|
[34] | LU Quanzhong,QIAO Jianwei,PENG Jianbing,et al. A typical Earth fissure resulting from loess collapse on the loess plateau in the Weihe Basin,China[J]. Engineering Geology,2019,259:105189. doi: 10.1016/j.enggeo.2019.105189 |
Typical cracks and sinkholes at the edge of the Jingyang Southern Platform Plateau
Testing apparatus
Formation and evolution curve of the sinkhole
Morphological characteristics of the sinkhole at the hydraulic erosion stage
Morphological characteristics of the sinkhole at the gravity collapse stage
Changes of sediment concentration with time
Changes of cumulative sediment concentration with time
Schematic diagram of the formation process of the seepage cave in fractured loess
Erosion characteristics under different crack openings