Citation: | WANG Zhimin, LUO Gang, WANG Yuan, HU Xiewen, CHEN Shikuo. A study of the influence of the crossing-slope fault geometry on the slope seismic response[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 147-157. doi: 10.16030/j.cnki.issn.1000-3665.202209030 |
Compared with the landslides in the general gravity environment, the earthquake-induced landslides are significantly different in formation mechanisms and kinetic characteristics. Under the normal and rainfall conditions, the fault fracture zone, as the discontinuous structural plane of the slope, often adversely affect the stability of the slope. Under the earthquake condition, the fault fracture zone within the slope has a limited filtering effect, which could weaken the seismic response of the slope. To investigate the influence of the reverse fault’s geometry on the slope’s seismic response, we took the Niumiangou landslide, the Woqian landslide, the Xiejiadianzi landslide and the Donghekou landslide as reference objects and generalized the geological model of the fault-crossing landslide in this study. The seismic response of slopes with faults of different widths, dips and positions are simulated using the 3DEC discrete element software. The simulation results show that (1) as the fault dip angle increases, the peak value of the total displacement of the slope and the peak acceleration of the slope surface show an increasing trend, and the slope stability is worse. (2) The peak acceleration of the monitoring point at the top of the slope is generally greater than that at the bottom and waist of the slope. As the width of fault fracture zone increases, the effect on the seismic response of the slope becomes obvious.(3) The presence of faults facilitates the probability of slope instability. When the fault is located at the top of the slope, the variation of the seismic response with the dip angle and the fault width shows a more obvious regularity. This study can provide a theoretical basis for further revealing the impact of fault fracture zone on the stability of slopes under the earthquake condition.
[1] |
黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,2009,28(6):1239 − 1249. [HUANG Runqiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1239 − 1249. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.06.021
|
[2] | QI Shengwen,XU Qiang,LAN Hengxing,et al. Spatial distribution analysis of landslides triggered by 2008.5. 12 Wenchuan Earthquake,China[J]. Engineering Geology,2010,116(1/2):95 − 108. |
[3] |
方华,崔鹏. 汶川地震大型高速远程滑坡力学机理及控制因子分析[J]. 灾害学,2010,25(增刊1):120 − 126. [FANG Hua,CUI Peng. Study on mechanical mechanism and controlling factors of high-speed distant landslides induced by the Wenchuan earthquake[J]. Journal of Catastrophology,2010,25(Sup 1):120 − 126. (in Chinese with English abstract)
|
[4] | JIBSON R W,HARP E L,SCHULZ W,et al. Large rock avalanches triggered by the M 7.9 Denali Fault,Alaska,earthquake of 3 November 2002[J]. Engineering Geology,2006,83(1/2/3):144 − 160. |
[5] |
黄润秋,李为乐. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,2009,17(1):19 − 28. [HUANG Runqiu,LI Weile. Fault effect analysis of geo-hazard triggered by Wenchaun earthquake[J]. Journal of Engineering Geology,2009,17(1):19 − 28. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.01.003
|
[6] |
陈晓利,邓俭良,冉洪流. 汶川地震滑坡崩塌的空间分布特征[J]. 地震地质,2011,33(1):191 − 202. [CHEN Xiaoli,DENG Jianliang,RAN Hongliu. Analysis of landslides triggered by Wenchuan earthquake[J]. Seismology and Geology,2011,33(1):191 − 202. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2011.01.018
|
[7] |
蒋瑶,吴中海,刘艳辉,等. 青海玉树活动断裂带的多期古地震滑坡及其年龄[J]. 地质通报,2014,33(4):503 − 516. [JIANG Yao,WU Zhonghai,LIU Yanhui,et al. The characteristics of palaeo-earthquake landslides along Yushu faulted zone and their ages[J]. Geological Bulletin of China,2014,33(4):503 − 516. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2014.04.007
|
[8] |
杨志华,郭长宝,吴瑞安,等. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质,2021,48(5):91 − 101. [YANG Zhihua,GUO Changbao,WU Ruian,et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology,2021,48(5):91 − 101. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202009024
|
[9] |
李光辉,铁永波,白永建,等. 则木河断裂带(普格段)地质灾害发育规律及易发性评价[J]. 中国地质灾害与防治学报,2022,33(3):123 − 133. [LI Guanghui,TIE Yongbo,BAI Yongjian,et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):123 − 133. (in Chinese with English abstract)
|
[10] |
毕鸿基,聂磊,曾超,等. 基于三种多变量不安定指数分析模型的汶川县地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(1):123 − 131. [BI Hongji,NIE Lei,ZENG Chao,et al. Geological hazard susceptibility evaluation in Wenchuan area based on three models of multivariate instability index analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):123 − 131. (in Chinese with English abstract)
|
[11] | OGLESBY D D. Fault geometry and the dynamics of the 1999 Chi-Chi (taiwan) earthquake[J]. Bulletin of the Seismological Society of America,2004,91(5):1099 − 1111. doi: 10.1785/0120000714 |
[12] |
王文沛,李滨,李洪涛. 断层穿越斜坡场地效应分析:以绵竹九龙镇山前斜坡为例[J]. 工程地质学报,2015,23(5):850 − 855. [WANG Wenpei,LI Bin,LI Hongtao. Site effects of slope passed by fault on PGA,a case study at Mianzhu Jiulong town[J]. Journal of Engineering Geology,2015,23(5):850 − 855. (in Chinese with English abstract)
|
[13] |
许冲. 环境地球科学之滑坡地震地质学[J]. 工程地质学报,2018,26(1):207 − 222. [XU Chong. Landslide seismology geology:A sub-discipline of environmental earth sciences[J]. Journal of Engineering Geology,2018,26(1):207 − 222. (in Chinese with English abstract)
|
[14] | JIBSON R W,HARP E L. Landslides triggered by the Northridge earthquake[J]. Earthquake & Volcanoes,1994,5l-41. |
[15] | WANG Wenneng,WU H L,NAKAMURA H,et al. Mass movements caused by recent tectonic activity:the 1999 Chi-Chi earthquake in central Taiwan [J]. Island Arc,2003,12(4):325 − 334. doi: 10.1046/j.1440-1738.2003.00400.x |
[16] | WANG H B,SASSA K,XU W Y. Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture,Japan[J]. Natural Hazards,2007,41(1):43 − 60. doi: 10.1007/s11069-006-9009-x |
[17] |
汤明高,许强,张伟,等. 汶川地震触发窝前滑坡特征及失稳机制探讨[J]. 岩石力学与工程学报,2011,30(增刊2):3491 − 3502. [TANG Minggao,XU Qiang,ZHANG Wei,et al. Discuss on failure mechanism and geologic characteristic of Woqian landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(Sup 2):3491 − 3502. (in Chinese with English abstract)
|
[18] | YIN Yueping,LI Bin,WANG Wenpei. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks[J]. Landslides,2015,12(3):537 − 547. doi: 10.1007/s10346-014-0497-6 |
[19] |
郭沉稳,姚令侃,段书苏,等. 汶川、芦山、尼泊尔地震触发崩塌滑坡分布规律[J]. 西南交通大学学报,2016,51(1):71 − 77. [GUO Chenwen,YAO Lingkan,DUAN Shusu,et al. Distribution regularities of landslides induced by Wenchuan earthquake,Lushan earthquake and Nepal earthquake[J]. Journal of Southwest Jiaotong University,2016,51(1):71 − 77. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2016.01.011
|
[20] |
张冬丽,周正华,陶夏新. 震源破裂方式和断层性质对近场强地震动特征的影响[J]. 西北地震学报,2009,31(4):311 − 318. [ZHANG Dongli,ZHOU Zhenghua,TAO Xiaxin. Influence of seismic source mechanism and fault property on near-field strong ground motion[J]. Northwestern Seismological Journal,2009,31(4):311 − 318. (in Chinese with English abstract)
|
[21] |
许强,李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818 − 826. [XU Qiang,LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818 − 826. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.002
|
[22] |
杨琴,范宣梅,许强,等. 北川唐家湾滑坡变形历史与形成机制研究[J]. 水文地质工程地质,2018,45(2):136 − 141. [YANG Qin,FAN Xuanmei,XU Qiang,et al. A study of the deformation history and mechanism of the Tangjiawan landslide[J]. Hydrogeology & Engineering Geology,2018,45(2):136 − 141. (in Chinese with English abstract)
|
[23] |
毕钰璋,付跃升,何思明,等. 牛眠沟地震滑坡碎屑化全过程离散元模拟[J]. 中国地质灾害与防治学报,2015,26(3):17 − 25. [BI Yuzhang,FU Yuesheng,HE Siming,et al. Simulation of the whole process of Niumiangou creek rock avalanche triggered by the earthquake using a distinct element method[J]. The Chinese Journal of Geological Hazard and Control,2015,26(3):17 − 25. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2015.03.04
|
[24] |
苏生瑞,张永双,李松,等. 汶川地震引发高速远程滑坡运动机理数值模拟研究——以谢家店子滑坡为例[J]. 地球科学与环境学报,2010,32(3):277 − 287. [SU Shengrui,ZHANG Yongshuang,LI Song,et al. Numerical analysis on motion mechanism of highspeed and long runout landslide by Wenchuan earthquake:Taking xiejiadianzi landslide as an example[J]. Journal of Earth Sciences and Environment,2010,32(3):277 − 287. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2010.03.011
|
[25] |
孙萍,张永双,殷跃平,等. 东河口滑坡-碎屑流高速远程运移机制探讨[J]. 工程地质学报,2009,17(6):737 − 744. [SUN Ping,ZHANG Yongshuang,YIN Yueping,et al. Discussion on long Run-out sliding mechanism of donghekou landslide-debris flow[J]. Journal of Engineering Geology,2009,17(6):737 − 744. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.06.002
|
[26] |
贺小黑,谭建民,裴来政. 断层对地质灾害的影响——以安化地区为例[J]. 中国地质灾害与防治学报,2017,28(3):150 − 155. [HE Xiaohei,TAN Jianmin,PEI Laizheng. Influence of faults on geohazards:Take Anhua County as an example[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):150 − 155. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2017.03.23
|
[27] |
汤明高,许强,黄润秋,等. 小湾水电工程6#山梁节理岩体高边坡3DEC分析[J]. 水文地质工程地质,2006,33(3):57 − 60. [TANG Minggao,XU Qiang,HUANG Runqiu,et al. 3DEC analysis on 6# high rock slope with joints in Xiaowan Hydropower Project[J]. Hydrogeology & Engineering Geology,2006,33(3):57 − 60. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.03.014
|
[28] | Itasca Consulting Group Inc. 3DEC—Three-Dimensional Distinct Element Code (Version 5.2) [R]. 2016. |
[29] | BOWA V M,XIA Yuanyou,YAN Minjia,et al. Toppling of the jointed rock slope with counter-tilted weak planes influenced by the response to local earthquakes[J]. International Journal of Mining and Mineral Engineering,2018,9(4):302. doi: 10.1504/IJMME.2018.097427 |
[30] | MREYEN A S,DONATI D,ELMO D,et al. Dynamic numerical modelling of co-seismic landslides using the 3D distinct element method:insights from the Balta rockslide (Romania)[J]. Engineering Geology,2022,307:106774. doi: 10.1016/j.enggeo.2022.106774 |
[31] |
魏进兵, 何治良, 杨仲康. 考虑地震危险性的倾倒变形边坡风险定量分析[J]. 地质科技通报,2022,41(2):71 − 78. [WEI Jinbing, HE Zhiliang, YANG Zhongkang. Quantitative risk analysis of toppling slope considering seismic risk[J]. Bulletin of Geological Science and Technology,2022,41(2):71 − 78.(in Chinese with English abstract)
|
Geological profile of the Niumiangou landslide (modified after Ref.[23])
Geological profile of the Woqian landslide (modified after Ref.[17])
Geological profile of the Xiejiadianzi landslide (modified after Ref.[24])
Geological profile of the Donghekou landslide (modified after Ref.[25])
Schematic diagram of the slope model and monitoring points layout
Ground motion acceleration time - history curve
Simulation results under operation condition 4
Trend of the peak displacement of the slope vs the dip angle of fault
Trend of the peak acceleration vs the dip angle of fault
Bubble diagram of the peak displacement vs the fault position on slope
Bubble diagram of the peak acceleration vs the fault position on slope
Peak displacement of the slope under different fault widths
Trend of the peak acceleration vs the dip angle of fault