2023 Vol. 50, No. 1
Article Contents

YI Fu, JIANG Shan, MU Dehui, GUAN Maocheng. Strength characteristics and strength prediction of fluid geopolymer solidified soil[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 60-68. doi: 10.16030/j.cnki.issn.1000-3665.202205038
Citation: YI Fu, JIANG Shan, MU Dehui, GUAN Maocheng. Strength characteristics and strength prediction of fluid geopolymer solidified soil[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 60-68. doi: 10.16030/j.cnki.issn.1000-3665.202205038

Strength characteristics and strength prediction of fluid geopolymer solidified soil

More Information
  • Geopolymer cementitious materials can replace cement-based cementitious materials as curing agents in engineering problems, such as backfilling of narrow fertilizer troughs, and effectively reduce pollution and energy consumption in the cement production process. There are few studies on cementitious materials. Three new green cementitious materials combined with alkali activators are used to solidify engineering slag and form fluidized geopolymer-solidified soil. The strength prediction model is established to analyze the influence of different factors on the strength. The results show that the strength of the solidified soil increases first and then decreases with the increasing modulus of the alkali activator, increases with the content of GGBS, fly ash and rice husk ash, and decreases with the increasing particle size. When the modulus of alkali activator increases to 1.2, the content of GGBS increases to 10%, the content of fly ash increases to 8%, and the content of rice husk ash increases to 11%, the strength of the solidified soil increases significantly. The average relative error of the prediction results of the strength prediction model is only 5.57%, which is relatively accurate for the solidified soil. The calculation results of the weights of each layer in the prediction model show that the curing age has the greatest impact on the strength of the solidified soil, and the particle size of rice husk ash has the minimal impact. The research results can provide theoretical support for the application of solidified soil in practical engineering.

  • 加载中
  • [1] DU Yanjun,YU Bowei,LIU Kai,et al. Physical,hydraulic,and mechanical properties of clayey soil stabilized by lightweight alkali-activated slag geopolymer[J]. Journal of Materials in Civil Engineering,2017,29(2):04016217. doi: 10.1061/(ASCE)MT.1943-5533.0001743

    CrossRef Google Scholar

    [2] PHUMMIPHAN I,HORPIBULSUK S,RACHAN R,et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material[J]. Journal of Hazardous Materials,2018,341:257 − 267. doi: 10.1016/j.jhazmat.2017.07.067

    CrossRef Google Scholar

    [3] 俞家人,陈永辉,陈庚,等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报,2020,23(2):364 − 371. [YU Jiaren,CHEN Yonghui,CHEN Geng,et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials,2020,23(2):364 − 371. (in Chinese with English abstract)

    Google Scholar

    [4] PELISSER F,GUERRINO E L,MENGER M,et al. Micromechanical characterization of metakaolin-based geopolymer[J]. Construction and Building Materials,2013,49:547 − 553. doi: 10.1016/j.conbuildmat.2013.08.081

    CrossRef Google Scholar

    [5] THAARRINI J,VENKATASUBRAMANI R. Feasibility studies on compressive strength of ground coal ash geopolymer mortar[J]. Periodica Polytechnica Civil Engineering,2015,59(3):373 − 379. doi: 10.3311/PPci.7696

    CrossRef Google Scholar

    [6] 王东星, 王宏伟, 王瑞红. 活性MgO–粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3717 − 3725

    Google Scholar

    WANG Dongxing, WANG Hongwei, WANG Ruihong, Micro-mechanisms of dredged sludge solidified with reactive MgO-fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019(Sup 2): 3717 − 3725. (in Chinese with English abstract)

    Google Scholar

    [7] 王东星,王宏伟,肖杰,等. 活性MgO-粉煤灰软土固化材料强度与机理研究[J]. 中国矿业大学学报,2018,47(4):879 − 884. [WANG Dongxing,WANG Hongwei,XIAO Jie,et al. Strength and micromechanism of reactive MgO-activated fly ash as an alternative soft soil stabilizer[J]. Journal of China University of Mining & Technology,2018,47(4):879 − 884. (in Chinese with English abstract) doi: 10.13247/j.cnki.jcumt.000899

    CrossRef Google Scholar

    [8] 王东星,王宏伟,邹维列,等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报,2019,38(增刊1):3197 − 3205. [WANG Dongxing,WANG Hongwei,ZOU Weilie,et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(Sup1):3197 − 3205. (in Chinese with English abstract)

    Google Scholar

    [9] 王东星, 何福金. CO2碳化–矿渣/粉煤灰协同固化土效果与机制研究[J]. 岩石力学与工程学报, 2020, 39(7): 1493 − 1502

    Google Scholar

    WANG Dongxing, HE Fujin. Investigation on performance and mechanism of CO2 carbonated slag/fly ash solidified soils[J]. Chinese Journal of Rock Mechanics and Engineering. 2020, 39(7): 1493 − 1502. (in Chinese with English abstract)

    Google Scholar

    [10] 陈忠清,朱泽威,吕越. 粉煤灰基地聚物加固土的强度及抗冻融性能试验研究[J]. 水文地质工程地质,2022,49(4):100 − 108. [CHEN Zhongqing,ZHU Zewei,LYV Yue. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology,2022,49(4):100 − 108. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202111045

    CrossRef Google Scholar

    [11] 贾栋钦,裴向军,张晓超,等. 改性糯米灰浆固化黄土的微观机理试验研究[J]. 水文地质工程地质,2019,46(6):90 − 96. [JIA Dongqin,PEI Xiangjun,ZHANG Xiaochao,et al. A test study of the microscopic mechanism of modified glutinous rice mortar solidified loess[J]. Hydrogeology & Engineering Geology,2019,46(6):90 − 96. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.06.12

    CrossRef Google Scholar

    [12] 陈伟,乐绍林,高文波,等. 海相疏浚淤泥流动固化的作用机制和微观结构分析[J]. 岩石力学与工程学报,2020,39(增刊1):3114 − 3122. [CHEN Wei,YUE Shaolin,GAO Wenbo,et al. Solidification mechanism and microstructural investigations on flow-solidified marine dredged sludge[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup1):3114 − 3122. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2019.0528

    CrossRef Google Scholar

    [13] 何俊,栗志翔,石小康,等. 侵蚀环境中碱渣-矿渣固化淤泥的力学性质[J]. 水文地质工程地质,2019,46(6):83 − 89. [HE Jun,LI Zhixiang,SHI Xiaokang,et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology,2019,46(6):83 − 89. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.06.11

    CrossRef Google Scholar

    [14] HE Jun, WANG Xiaoqi, SU Ying, et al. Shear strength of stabilized clay treated with soda residue and ground granulated blast furnace slag[J]. Journal of Materials in Civil Engineering, 2019, 31(3).

    Google Scholar

    [15] LAKSHMI S M,GEETHA S,SELVAKUMAR M,et al. Application of lime and GGBS to improve the strength of clayey sand[J]. IOP Conference Series Materials Science and Engineering,2020,989:12 − 28.

    Google Scholar

    [16] 刘猛,戚红雨,王荆宁,等. 基于神经网络算法的智能抗干扰系统设计[J]. 计算机测量与控制,2018,26(10):155 − 159. [LIU Meng,QI Hongyu,WANG Jingning,et al. Design of intelligent anti-jamming system based on neural network algorithm[J]. Computer Measurement & Control,2018,26(10):155 − 159. (in Chinese with English abstract) doi: 10.16526/j.cnki.11-4762/tp.2018.10.034

    CrossRef Google Scholar

    [17] 王玉振. 基于EMD的小波神经网络模型预测大坝变形[J]. 水力发电,2018,44(8):101 − 104. [WANG Yuzhen. Prediction of dam deformation based on EMD neural network model[J]. Water Power,2018,44(8):101 − 104. (in Chinese with English abstract) doi: 10.3969/j.issn.0559-9342.2018.08.027

    CrossRef Google Scholar

    [18] 江显群,陈武奋. BP神经网络与GA-BP农作物需水量预测模型对比[J]. 排灌机械工程学报,2018,36(8):762 − 766. [JIANG Xianqun,CHEN Wufen. Comparison between BP neural network and GA-BP crop water demand forecasting model[J]. Journal of Drainage and Irrigation Machinery Engineering,2018,36(8):762 − 766. (in Chinese with English abstract)

    Google Scholar

    [19] 王锦力,殷志祥,周明伟. 免振捣粉煤灰混凝土抗压强度的神经网络预测[J]. 辽宁工程技术大学学报,2006,25(增刊 1):131 − 132. [WANG Jinli,YIN Zhixiang,ZHOU Mingwei. Neural network prediction of compressive strength for self-compaction concrete of coal ash[J]. Journal of Liaoning Technical University,2006,25(Sup 1):131 − 132. (in Chinese with English abstract)

    Google Scholar

    [20] 刘婵娟. 神经网络模型对拔出法检测超高强混凝土强度评定研究[D]. 长沙: 湖南大学, 2017

    Google Scholar

    LIU Chanjuan. Strength prediction research on pullout method testing the strength of ultra-high strength concrete by neural network model[D]. Changsha: Hu’nan University, 2017. (in Chinese with English abstract)

    Google Scholar

    [21] 张龙元,杨春峰,王培竹. BP神经网络模型在橡胶集料混凝土冻融循环后力学性能研究中的应用[J]. 住宅与房地产,2017(29):13 − 13. [ZHANG Longyuan,YANG Chunfeng,WANG Peizhu. Application of BP neural network model in the study of mechanical properties of rubber aggregate concrete after freeze-thaw cycle[J]. Housing and Real Estate,2017(29):13 − 13. (in Chinese)

    Google Scholar

    [22] 赵明亮,水中和,周华新,等. 中低强度等级混凝土抗压强度的BP神经网络模型预测研究[J]. 混凝土,2021(3):35 − 38. [ZHAO Mingliang,SHUI Zhonghe,ZHOU Huaxin,et al. Prediction of compressive strength of medium and low strength grade concrete by BP neural network model[J]. Concrete,2021(3):35 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-3550.2021.03.009

    CrossRef Google Scholar

    [23] 李扬,王伯昕,陈冬昕,等. 基于BP神经网络预测复合盐侵蚀后混凝土的相对动弹性模量[J]. 混凝土,2018(7):21 − 23. [LI Yang,WANG Boxin,CHEN Dongxin,et al. Prediction of relative dynamic elastic modulus of concrete after erosion based on BP neutral network theory[J]. Concrete,2018(7):21 − 23. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-3550.2018.07.006

    CrossRef Google Scholar

    [24] 张伟,刘晓强,李顺群,等. 天津临港疏浚土固化特性及强度预测分析[J]. 水利水电技术,2020,51(4):20 − 26. [ZHANG Wei,LIU Xiaoqiang,LI Shunqun,et al. Analysis on prediction of solidifying characteristics and strength of dredged soil in port-vicinity area of Tianjin[J]. Water Resources and Hydropower Engineering,2020,51(4):20 − 26. (in Chinese with English abstract)

    Google Scholar

    [25] 路晓宇. 大连海相软土固化强度试验研究及其神经网络预测[D]. 大连: 大连理工大学, 2021

    Google Scholar

    LU Xiaoyu. Experimental study on solidification strength of Dalian marine soft soil and its neural network prediction[D]. Dalian: Dalian University of Technology, 2021. (in Chinese with English abstract)

    Google Scholar

    [26] 童国庆,张吾渝,高义婷,等. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报,2022,36(4):129 − 134. [TONG Guoqing,ZHANG Wuyu,GAO Yiting,et al. Mechanical properties and micromechanism of alkali-activated fly ash geopolymer[J]. Materials Reports,2022,36(4):129 − 134. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(6)

Article Metrics

Article views(3126) PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint