Citation: | DING Rui, DENG Yaping, QIAN Jiazhong, YANG Ze, MA Lei. An experimental study of salt/heat transport in a fracture-matrix system based on the resistivity method[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 51-59. doi: 10.16030/j.cnki.issn.1000-3665.202111055 |
In order to explore the effectiveness of salt and heat tracers in a fracture-matrix system, a fracture-matrix test model is designed. The tracer tests with different tracers are carried out. The transport process of tracer is described in the fracture-matrix with the real-time dynamic resistivity monitoring data at different measuring points, and the effectiveness of salt and heat tracers based on the resistivity method is discussed. The results show that the process of injecting three different tracers into the fracture-matrix system and the existence of fracture can be seen by the resistivity method. Under the salt-heat tracer, the difference between the volume conductivity in the fracture and the matrix is the largest, and the change rate of the volume conductivity in the fracture and the matrix decreases with the increasing depth. The fitting effect of concentration and volume conductivity is better than that of temperature and volume conductivity. These indicate that the tracer based on the resistivity method is effective in describing the positions of the fracture and matrix in the fracture-matrix system, and the salt-heat combined tracer has the best effect. The results are of certain reference for the field electrical exploration of the positions of fractures and other heterogeneous layers.
[1] | 王月,安达,席北斗,等. 某基岩裂隙水型危险废物填埋场地下水污染特征分析[J]. 环境化学,2016,35(6):1196 − 1202. [WANG Yue,AN Da,XI Beidou,et al. Groundwater pollution characteristics of the hazardous waste landfill built upon bedrock fissure water[J]. Environmental Chemistry,2016,35(6):1196 − 1202. (in Chinese with English abstract) |
[2] | 姜宝良,陈宁宁,李小建,等. 河南某大型裂隙岩溶水源地地下水位动态分析[J]. 水文地质工程地质,2021,48(2):37 − 43. [JIANG Baoliang,CHEN Ningning,LI Xiaojian,et al. A dynamic analysis of groundwater levels in a large fractured-karst groundwater wellfield in Henan[J]. Hydrogeology & Engineering Geology,2021,48(2):37 − 43. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202007046 |
[3] | 王礼恒,李国敏,董艳辉. 裂隙介质水流与溶质运移数值模拟研究综述[J]. 水利水电科技进展,2013,33(4):84 − 88. [WANG Liheng,LI Guomin,DONG Yanhui. Review of numerical simulation of flow and solute transport in fractured media[J]. Advances in Science and Technology of Water Resources,2013,33(4):84 − 88. (in Chinese with English abstract) doi: 10.3880/j.issn.1006-7647.2013.04.020 |
[4] | 陶同康. 充填裂隙水流特性研究[J]. 水利水运科学研究,1995(1):23 − 32. [TAO Tongkang. On flow property of filling fractures[J]. Journal of Nanjing Hydraulic Research Institute,1995(1):23 − 32. (in Chinese with English abstract) |
[5] | 牛子豪,束龙仓,林欢,等. 不同补给条件下裂隙-管道介质间水流交换的示踪试验研究[J]. 水文地质工程地质,2017,44(3):6 − 11. [NIU Zihao,SHU Longcang,LIN Huan,et al. Experimental study of water quantity exchange between fissures and sinkholes under different recharge modes in the fissure-conduit media[J]. Hydrogeology & Engineering Geology,2017,44(3):6 − 11. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.03.02 |
[6] | PTAK T. Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport:A review of some recent developments[J]. Journal of Hydrology,2004,294(1/2/3):122 − 163. |
[7] | GARDIEN C J, POPE G A, HILL A D. Hydraulic fracture diagnosis using chemical tracers[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado. Society of Petroleum Engineers, 1996, 36675: 925-932. |
[8] | ELAHI S H,JAFARPOUR B. Dynamic fracture characterization from tracer-test and flow-rate data with ensemble Kalman filter[J]. SPE Journal,2018,23(2):449 − 466. doi: 10.2118/189449-PA |
[9] | 符韵梅,董艳辉,徐志方,等. 分布式光纤温度示踪识别裂隙地下水流动研究进展[J]. 水利水电科技进展,2020,40(3):86 − 94. [FU Yunmei,DONG Yanhui,XU Zhifang,et al. Advances of DTS-based heat tracer tests in characterization of groundwater flow in fractured media[J]. Advances in Science and Technology of Water Resources,2020,40(3):86 − 94. (in Chinese with English abstract) doi: 10.3880/j.issn.1006-7647.2020.03.014 |
[10] | DANN R L,CLOSE M E,PANG L,et al. Complementary use of tracer and pumping tests to characterize a heterogeneous channelized aquifer system in New Zealand[J]. Hydrogeology Journal,2008,16(6):1177 − 1191. doi: 10.1007/s10040-008-0291-4 |
[11] | KLEPIKOVA M V,LE BORGNE T,BOUR O,et al. Heat as a tracer for understanding transport processes in fractured media:Theory and field assessment from multiscale thermal push-pull tracer tests[J]. Water Resources Research,2016,52(7):5442 − 5457. doi: 10.1002/2016WR018789 |
[12] | QIAN Jiazhong. Experimental study of solute transport under non-Darcian flow in a single fracture[J]. Journal of Hydrology,2011,399(3/4):246 − 254. |
[13] | 金爱芳,刘磊,殷秀兰. 不同勘探方法在丰水期和枯水期岩溶塌陷探测效果分析研究[J]. 水文地质工程地质,2022,49(6):171 − 178. [JIN Aifang,LIU Lei,YIN Xiulan. Studies on effect analysis of different exploration methods for karst collapse detection in the periods of rainy and dry seasons[J]. Hydrogeology & Engineering Geology,2022,49(6):171 − 178. (in Chinese with English abstract) |
[14] | 朱建友,邓亚平,施小清,等. 高密度电阻率法探测DNAPLs污染的适宜性探讨[J]. 水文地质工程地质,2017,44(1):144 − 151. [ZHU Jianyou,DENG Yaping,SHI Xiaoqing,et al. Discussion on the suitability of electrical resistivity tomography method to detect DNAPLs contaminantion[J]. Hydrogeology & Engineering Geology,2017,44(1):144 − 151. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.01.22 |
[15] | 齐信,黎清华,张再天,等. 海南省琼中县花岗岩地区含水层电性特征及地下水赋存规律[J]. 地质通报,2021,40(6):1001 − 1009. [QI Xin,LI Qinghua,ZHANG Zaitian,et al. Electrical characteristics and storage rules of groundwater in granite area of Qiongzhong County,Hainan Province[J]. Geological Bulletin of China,2021,40(6):1001 − 1009. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2021.06.015 |
[16] | 范雨霏,潘保芝,郭宇航,等. 利用数字岩心技术评价含黏土砂岩导电模型[J]. 吉林大学学报(地球科学版),2021,51(3):919 − 926. [FAN Yufei,PAN Baozhi,GUO Yuhang,et al. Evaluate electrical conductivity models of clay-bearing sandstones by digital core technology[J]. Journal of Jilin University (Earth Science Edition),2021,51(3):919 − 926. (in Chinese with English abstract) |
[17] | KEMNAA A,JAN VANDERBORGHTA J,KULESSA B,et al. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models[J]. Journal of Hydrology,2002,267(3/4):125 − 146. |
[18] | KOESTEL J,KEMNA A,JAVAUX M,et al. Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR[J]. Water Resources Research,2008,44(12):W12411. |
[19] | HAYLEY K,BENTLEY L R,GHARIBI M,et al. Low temperature dependence of electrical resistivity:Implications for near surface geophysical monitoring[J]. Geophysical Research Letters,2007,34(18):L18402. |
[20] | GIORDANO N, ARATO A, COMINA C, et al. Time-lapse electrical resistivity imaging of the thermally affected zone of a borehole thermal energy storage system near Torino(Northern Italy)[J]. Journal of Applied Geophysics,2017,140:123 − 134. |
[21] | 孟银生,张光之,刘瑞德. 电阻率参数预测地热田深部温度方法技术研究[J]. 物探化探计算技术,2010,32(1):31 − 34. [MENG Yinsheng,ZHANG Guangzhi,LIU Ruide. The deep temperature prediction by resistivity in exploration of the geothermal field system[J]. Computing Techniques for Geophysical and Geochemical Exploration,2010,32(1):31 − 34. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1749.2010.01.006 |
[22] | 孙红亮. 高密度电阻率法延时性勘探的研究与实践[D]. 成都: 成都理工大学, 2008 SUN Hongliang. A study on the electrical imaging time-delay surveys[D]. Chengdu: Chengdu University of Technology, 2008. (in Chinese with English abstract) |
[23] | 郑智杰,曾洁,甘伏平. 装置和电极距对岩溶管道高密度电法响应特征的影响研究[J]. 水文地质工程地质,2016,43(5):161 − 165. [ZHENG Zhijie,ZENG Jie,GAN Fuping. Research on the effect of device and electrode distance on the characteristics of high-density resistivity method in karst pipeline[J]. Hydrogeology & Engineering Geology,2016,43(5):161 − 165. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2016.05.24 |
[24] | YANG Ze,DENG Yaping,QIAN Jiazhong,et al. Characterizing temporal behavior of a thermal tracer in porous media by time-lapse electrical resistivity measurements[J]. Hydrogeology Journal,2021,29(3):1173 − 1188. doi: 10.1007/s10040-021-02307-1 |
[25] | 涂羽娇,王波,冯荣,等. 堆积石英砂导热性能研究[J]. 硅酸盐通报,2015,34(12):3492 − 3497. [TU Yujiao,WANG Bo,FENG Rong,et al. Thermal conductivity of accumulated quartz sand[J]. Bulletin of the Chinese Ceramic Society,2015,34(12):3492 − 3497. (in Chinese with English abstract) |
[26] | 李刚,李超,李小森,等. 石英砂中甲烷水合物渗透率实验与模型验证[J]. 天然气工业,2017,37(12):53 − 60. [LI Gang,LI Chao,LI Xiaosen,et al. The permeability experiment on the methane hydrate in quartz sands and its model verification[J]. Natural Gas Industry,2017,37(12):53 − 60. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2017.12.008 |
[27] | LI Xianjie,SONG Xinwang,YUE Xiang’an,et al. Effects of shear fracture on in-depth profile modification of weak gels[J]. Petroleum Science,2007,4(1):55 − 60. doi: 10.1007/BF03186574 |
[28] | 中华人民共和国建设部. 普通混凝土用砂、石质量及检验方法标准: JGJ 52—2006[S]. 北京: 中国建筑工业出版社, 2007 Ministry of Construction of the People’s Republic of China. Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete: JGJ 52—2006[S]. Beijing: China Architecture & Building Press, 2007. (in Chinese) |
[29] | 陈丽梅,程敏熙,肖晓芳,等. 盐溶液电导率与浓度和温度的关系测量[J]. 实验室研究与探索,2010,29(5):39 − 42. [CHEN Limei,CHENG Minxi,XIAO Xiaofang,et al. Measurement of the relationship between conductivity of salt solution and concentration and temperature[J]. Research and Exploration in Laboratory,2010,29(5):39 − 42. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7167.2010.05.012 |
[30] | HERMANS T,NGUYEN F,ROBERT T,et al. Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems[J]. Energies,2014,7(8):5083 − 5118. doi: 10.3390/en7085083 |
Schematic diagram test device
Conductivity of tap water at different temperatures and NaCl solution at different concentrations at room temperature (25 °C)
Resistivity inversion results of nine groups of tests
Change of volume conductivity with time at sampling point under 30~40 sand filled matrix
Change rate of volume conductivity value with depth of 30~40 sand filled matrix under different tracers
Scatter plot of sample temperature/concentration and volume conductivity in a 30~40 sand filled matrix