2023 Vol. 50, No. 1
Article Contents

ZHENG Ruoxuan, SUN Xiuli, WANG Yu, JIN Xun, YU Qinjie, LIU Wenhua. Energy consumption in a large- scale 3D electro-osmosis-hydraulic synergism system for sludge consolidation[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 69-77. doi: 10.16030/j.cnki.issn.1000-3665.202112040
Citation: ZHENG Ruoxuan, SUN Xiuli, WANG Yu, JIN Xun, YU Qinjie, LIU Wenhua. Energy consumption in a large- scale 3D electro-osmosis-hydraulic synergism system for sludge consolidation[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 69-77. doi: 10.16030/j.cnki.issn.1000-3665.202112040

Energy consumption in a large- scale 3D electro-osmosis-hydraulic synergism system for sludge consolidation

More Information
  • The 3D electro-osmosis-hydraulic synergistic consolidation method is proposed based on the theory of electroosmosis and consolidation to solve the problem of the high energy consumption and large-scale simulation of practice conditions for low permeability and high-water content soils. A set of multi-functional catchment drainage systems combining the synergistic action of the cathode-catchment-intermittent pumping mode is developed. Consolidation of two types of Taihu lake sediments from the Gonghuwan wetland and Baimao Storage site are investigated using this system. Two key indicators of energy consumption per unit volume and displacement per unit volume of the 3D electro-osmosis-hydraulic synergistic consolidation system and the traditional 1D electroosmosis system are analyzed to illustrate the advantage of the 3D system. The results show that the design of water collecting well can greatly reduce the resistance near the soil cathode, intermittently improve the system current, improve the drainage efficiency and reduce the energy consumption. Intermittent pumping can intermittently reduce the system current, and maintain the continuity of system seepage by using the electric and hydraulic synergistic effect. A decrease-increase periodic decrease mode of the current for the 3D electrohydraulic seepage consolidation system is observed. The decrease rate of the current is slower than that of the 1D electro-osmotic system, especially for the soil with high organic matter content, the current in the electroosmotic process is maintained at a relatively higher level, which improves the drainage consolidation efficiency. The energy consumption per unit volume and displacement per unit volume of the 3D electro-hydraulic seepage consolidation system are about 2/3 and 1/30 that of the 1D electro-osmotic system, respectively. The 3D electro-hydraulic seepage consolidation system has remarkable energy saving effect in consolidation and drainage of soft soil with high water content. The 3D electroosmosis-hydraulic consolidation system can greatly improve the drainage consolidation efficiency, greatly reduce energy consumption and better guide the application of the proposed method to the electro-osmotic consolidation of high-water content sludge and another related field.

  • 加载中
  • [1] 刘松玉,周建,章定文,等. 地基处理技术进展[J]. 土木工程学报,2020,53(4):93 − 110. [LIU Songyu,ZHOU Jian,ZHANG Dingwen,et al. State of the art of the ground improvement technology in China[J]. China Civil Engineering Journal,2020,53(4):93 − 110. (in Chinese with English abstract)

    Google Scholar

    [2] 郑凌逶,谢新宇,谢康和,等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版),2017,51(6):1064 − 1073. [ZHENG Lingwei,XIE Xinyu,XIE Kanghe,et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science),2017,51(6):1064 − 1073. (in Chinese with English abstract)

    Google Scholar

    [3] 林伟岸,江文豪,詹良通. 考虑真空加载过程及堆载随时间变化下砂井地基的普遍固结解析解[J]. 岩土力学,2021,42(7):1828 − 1838. [LIN Weian,JIANG Wenhao,ZHAN Liangtong. General analytical solution for consolidation of sand-drained foundation considering the vacuum loading process and the time-dependent surcharge loading[J]. Rock and Soil Mechanics,2021,42(7):1828 − 1838. (in Chinese with English abstract) doi: 10.16285/j.rsm.2020.1649

    CrossRef Google Scholar

    [4] BHOSLE S,DESHMUKH V. Experimental studies on soft marine clay under combined vacuum and surcharge preloading with PVD[J]. International Journal of Geotechnical Engineering,2021,15(4):461 − 470. doi: 10.1080/19386362.2018.1496004

    CrossRef Google Scholar

    [5] NGUYEN T N,BERGADO D T,KIKUMOTO M,et al. A simple solution for prefabricated vertical drain with surcharge preloading combined with vacuum consolidation[J]. Geotextiles and Geomembranes,2021,49(1):304 − 322. doi: 10.1016/j.geotexmem.2020.10.004

    CrossRef Google Scholar

    [6] 金志伟,阎长虹,李良伟,等. 低含水率盾构泥浆的真空-电渗联合泥水分离技术试验研究[J]. 水文地质工程地质,2020,47(1):103 − 110. [JIN Zhiwei,YAN Changhong,LI Liangwei,et al. An experimental study of vacuum negative pressure incorporated with electro-osmosis in mud-water dehydration for shield slurry with low water content[J]. Hydrogeology & Engineering Geology,2020,47(1):103 − 110. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906033

    CrossRef Google Scholar

    [7] WANG Jun, ZHAO Ran, CAI Yuanqiang,et al. Vacuum preloading and electro-osmosis consolidation of dredged slurry pretreated with flocculants[J]. Engineering Geology,2018,246:123 − 130. doi: 10.1016/j.enggeo.2018.09.024

    CrossRef Google Scholar

    [8] WU Jun,XUAN Youjin,DENG Yongfeng,et al. Combined vacuum and surcharge preloading method to improve lianyungang soft marine clay for embankment widening project:A case[J]. Geotextiles and Geomembranes,2021,49(2):452 − 465. doi: 10.1016/j.geotexmem.2020.10.013

    CrossRef Google Scholar

    [9] XUE Zhijia,XIONG Qi. Electro-osmotic chemical behavior of clayey soil under various boundary conditions[J]. Journal of Central South University,2021,28(5):1493 − 1504. doi: 10.1007/s11771-021-4717-7

    CrossRef Google Scholar

    [10] ZHANG Heng, ZHOU Guoxiang, WU Junliang,et al. Mechanism for soil reinforcement by electroosmosis in the presence of calcium chloride[J]. Chemical Engineering Communications,2017,204(4):424 − 433. doi: 10.1080/00986445.2016.1273833

    CrossRef Google Scholar

    [11] 刘飞禹,吴文清,海钧,等. 絮凝剂对电渗处理河道疏浚淤泥的影响[J]. 中国公路学报,2020,33(2):56 − 63. [LIU Feiyu,WU Wenqing,HAI Jun,et al. Effect of flocculants on electro-osmotic treatment of river dredged sludge[J]. China Journal of Highway and Transport,2020,33(2):56 − 63. (in Chinese with English abstract) doi: 10.19721/j.cnki.1001-7372.2020.02.005

    CrossRef Google Scholar

    [12] 沈美兰,周太全,李吴刚. 高岭土电渗固结特性及数值模拟研究[J]. 水文地质工程地质,2021,48(4):78 − 85. [SHEN Meilan,ZHOU Taiquan,LI Wugang. A study of the Kaolin electro-osmotic consolidation characteristics and their numerical simulation[J]. Hydrogeology & Engineering Geology,2021,48(4):78 − 85. (in Chinese with English abstract)

    Google Scholar

    [13] 王耀明, 王柳江, 刘斯宏, 等. 非饱和黏土的一维电渗排水解析理论[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3767 − 3774

    Google Scholar

    WANG Yaoming, WANG Liujian, LIU Sihong, et al. One-dimensional analytical theory of electro-osmotic drainage for unsaturated clayey soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup 2): 3767 − 3774. (in Chinese with English abstract)

    Google Scholar

    [14] 龚明星,王档良,詹贵贵. 考虑有效电势变化的软土一维电渗固结理论[J]. 水文地质工程地质,2015,42(4):61 − 66. [GONG Mingxing,WANG Dangliang,ZHAN Guigui. 1-D electro-osmotic consolidation theory considering variation in effective potential in soft soil[J]. Hydrogeology & Engineering Geology,2015,42(4):61 − 66. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2015.04.11

    CrossRef Google Scholar

    [15] 陶燕丽,周建,龚晓南,等. 铁和铜电极对电渗效果影响的对比试验研究[J]. 岩土工程学报,2013,35(2):388 − 394. [TAO Yanli,ZHOU Jian,GONG Xiaonan,et al. Comparative experiment on influence of ferrum and cuprum electrodes on electroosmotic effects[J]. Chinese Journal of Geotechnical Engineering,2013,35(2):388 − 394. (in Chinese with English abstract)

    Google Scholar

    [16] DALHAT MU’AZU N,ESSA M H. Comparative performance evaluation of anodic materials for electro-kinetic removal of Lead (II) from contaminated clay soil[J]. Soil and Sediment Contamination:An International Journal,2020,29(1):69 − 95. doi: 10.1080/15320383.2019.1673698

    CrossRef Google Scholar

    [17] XUE Zhijia,TANG Xiaowei,YANG Qing,et al. Influence of salt content on clay electro-dewatering with copper and stainless steel anodes[J]. Drying Technology,2019,37(15):2005 − 2019. doi: 10.1080/07373937.2018.1555709

    CrossRef Google Scholar

    [18] 胡俞晨,王钊,庄艳峰. 电动土工合成材料加固软土地基实验研究[J]. 岩土工程学报,2005,27(5):582 − 586. [HU Yuchen,WANG Zhao,ZHUANG Yanfeng. Experimental studies on electro-osmotic consolidation of soft clay using EKG electrodes[J]. Chinese Journal of Geotechnical Engineering,2005,27(5):582 − 586. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2005.05.020

    CrossRef Google Scholar

    [19] GLENDINNING S,LAMONT-BLACK J,JONES C. Treatment of sewage sludge using electrokinetic geosynthetics[J]. Journal of Hazardous Materials,2007,139(3):491 − 499. doi: 10.1016/j.jhazmat.2006.02.046

    CrossRef Google Scholar

    [20] FOURIE A B,JOHNS D G,JONES C J F P. Dewatering of mine tailings using electrokinetic geosynthetics[J]. Canadian Geotechnical Journal,2007,44(2):160 − 172. doi: 10.1139/t06-112

    CrossRef Google Scholar

    [21] 谢新宇,郑凌逶,谢康和,等. 电势梯度与电极间距变化的滨海软土电渗模型试验研究[J]. 土木工程学报,2019,52(1):108 − 114. [XIE Xinyu,ZHENG Lingwei,XIE Kanghe,et al. Experimental study on electro-osmosis of marine soft soil with varying potential gradient and electrode spacing[J]. China Civil Engineering Journal,2019,52(1):108 − 114. (in Chinese with English abstract) doi: 10.15951/j.tmgcxb.20181121.001

    CrossRef Google Scholar

    [22] WEN Liang. Influence of the electric voltage gradient,electrode spacing and electrode radius on slurry dewatering by vertical electro-osmosis[J]. International Journal of Electrochemical Science,2020,15(11):11326 − 11339.

    Google Scholar

    [23] 刘飞禹,宓炜,王军,等. 逐级加载电压对电渗加固吹填土的影响[J]. 岩石力学与工程学报,2014,33(12):2582 − 2591. [LIU Feiyu,MI Wei,WANG Jun,et al. Influence of applying stepped voltage in electroosmotic reinforcement of dredger fill[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(12):2582 − 2591. (in Chinese with English abstract)

    Google Scholar

    [24] ZHANG Heng,MA Qinguo,SU Wenji,et al. On the dewatering of electroosmotic soil using intermittent current incorporated with calcium chloride[J]. Environmental Technology,2019,42(3):468 − 478.

    Google Scholar

    [25] FU Hongtao,FANG Ziquan,WANG Jun,et al. Experimental comparison of electroosmotic consolidation of Wenzhou dredged clay sediment using intermittent current and polarity reversal[J]. Marine Georesources & Geotechnology,2018,36(1):131 − 138.

    Google Scholar

    [26] 庄艳峰. 电渗排水固结的设计理论和方法[J]. 岩土工程学报,2016,38(增刊 1):152 − 155. [ZHUANG Yanfeng. Theory and design method for electro-osmotic consolidation[J]. Chinese Journal of Geotechnical Engineering,2016,38(Sup 1):152 − 155. (in Chinese with English abstract) doi: 10.11779/CJGE2016S1028

    CrossRef Google Scholar

    [27] 温晓贵,胡平川,周建,等. 裂缝对电渗模型尺寸效应影响的试验研究[J]. 岩土工程学报,2014,36(11):2054 − 2060. [WEN Xiaogui,HU Pingchuan,ZHOU Jian,et al. Experimental research on influence of cracks on size effect of electro-osmosis model[J]. Chinese Journal of Geotechnical Engineering,2014,36(11):2054 − 2060. (in Chinese with English abstract) doi: 10.11779/CJGE201411011

    CrossRef Google Scholar

    [28] LING Jianming,HAN Bingye,XIE Yan,et al. Laboratory and field study of electroosmosis dewatering for pavement subgrade soil[J]. Journal of Cold Regions Engineering,2017,31(4):04017010.1 − 04017010.16.

    Google Scholar

    [29] 王柳江, 陈强强, 刘斯宏, 等. 水平排水板真空预压联合电渗处理软黏土模型试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3516 − 3525

    Google Scholar

    WANG Liujiang, CHEN Qiangqiang, LIU Sihong, et al. Model test on treatment of soft clay under combined vacuum preloading with electro-osmosis using prefabricated horizontal drain[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3516 − 3525. (in Chinese with English abstract)

    Google Scholar

    [30] ESRIG M I. Pore pressures,consolidation,and electrokinetics[J]. ASCE Soil Mechanics and Foundation Division Journal,1968,94(4):899 − 921. doi: 10.1061/JSFEAQ.0001178

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(1574) PDF downloads(90) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint