[1]
|
何思明, 吴永, 李新坡. 滚石冲击碰撞恢复系数研究[J]. 岩土力学,2009,30(3):623 − 627. [HE Siming, WU Yong, LI Xinpo. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics,2009,30(3):623 − 627. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.03.008
CrossRef Google Scholar
|
[2]
|
章广成, 向欣, 唐辉明. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报,2011,30(6):1266 − 1273. [ZHANG Guangcheng, XIANG Xin, TANG Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1266 − 1273. (in Chinese with English abstract)
Google Scholar
|
[3]
|
姬中民, 唐一举, 伍法权, 等. 落石形状和尺寸对恢复系数影响的室内试验研究[J]. 岩土力学,2021,42(3):665 − 672. [JI Zhongmin, TANG Yiju, WU Faquan, et al. Laboratory investigation of the effect of rockfall shape and size on coefficient of restitution[J]. Rock and Soil Mechanics,2021,42(3):665 − 672. (in Chinese with English abstract)
Google Scholar
|
[4]
|
吴建利, 胡卸文, 梅雪峰, 等. 落石冲击混凝土板与缓冲层组合结构的动力响应[J]. 水文地质工程地质,2021,48(1):78 − 87. [WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology,2021,48(1):78 − 87. (in Chinese with English abstract)
Google Scholar
|
[5]
|
吴建利, 胡卸文, 梅雪峰, 等. 高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应[J]. 水文地质工程地质,2020,47(4):114 − 122. [WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology,2020,47(4):114 − 122. (in Chinese with English abstract)
Google Scholar
|
[6]
|
沈均, 何思明, 吴永. 滚石灾害研究现状及发展趋势[J]. 灾害学,2008,23(4):122 − 125. [SHEN Jun, HE Siming, WU Yong. Present research status and development trend of rockfall hazards[J]. Journal of Catastrophology,2008,23(4):122 − 125. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2008.04.025
CrossRef Google Scholar
|
[7]
|
YAN P, ZHANG J H, KONG X Z, et al. Numerical simulation of rockfall trajectory with consideration of arbitrary shapes of falling rocks and terrain[J]. Computers and Geotechnics,2020,122:103511. doi: 10.1016/j.compgeo.2020.103511
CrossRef Google Scholar
|
[8]
|
AGLIARDI F, CROSTA G B. High resolution three-dimensional numerical modelling of rockfalls[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(4):455 − 471. doi: 10.1016/S1365-1609(03)00021-2
CrossRef Google Scholar
|
[9]
|
LAN H X, MARTIN C D, LIM C H. RockFall analyst: a GIS extension for three dimensional and spatially distributed rockfall hazard modeling[J]. Computers & Geosciences,2007,33(2):262 − 279.
Google Scholar
|
[10]
|
STEVENS W. RockFall: a tool for probabilistic analysis, design of remedial measures and prediction of rock falls[D].Toronto: University of Toronto, 1998.
Google Scholar
|
[11]
|
DORREN L K A. Rockyfor3D (v5.2) revealed-transparent description of the complete 3D rockfall model[EB/OL]. (2015-12-16)[2021-04-20]. http://www.ecorisq.org/
Google Scholar
|
[12]
|
LI L P, LAN H X. Probabilistic modeling of rockfall trajectories: a review[J]. Bulletin of Engineering Geology and the Environment,2015,74(4):1163 − 1176. doi: 10.1007/s10064-015-0718-9
CrossRef Google Scholar
|
[13]
|
叶四桥, 巩尚卿. 落石碰撞法向恢复系数的模型试验研究[J]. 中国铁道科学,2015,36(4):13 − 19. [YE Siqiao, GONG Shangqing. Research on normal restitution coefficient of rockfall collision by model tests[J]. China Railway Science,2015,36(4):13 − 19. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2015.04.03
CrossRef Google Scholar
|
[14]
|
黄润秋, 刘卫华. 基于正交设计的滚石运动特征现场试验研究[J]. 岩石力学与工程学报,2009,28(5):882 − 891. [HUANG Runqiu, LIU Weihua. In-situ test study of characteristics of rolling rock blocks based on orthogonal design[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(5):882 − 891. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.05.003
CrossRef Google Scholar
|
[15]
|
叶四桥, 巩尚卿, 王林峰, 等. 落石碰撞切向恢复系数的取值研究[J]. 中国铁道科学,2018,39(1):8 − 15. [YE Siqiao, GONG Shangqing, WANG Linfeng, et al. Research on value of tangential restitution coefficient for rockfall collision[J]. China Railway Science,2018,39(1):8 − 15. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2018.01.02
CrossRef Google Scholar
|
[16]
|
GIANI G P, GIACOMINI A, MIGLIAZZA M, et al. Experimental and theoretical studies to improve rock fall analysis and protection work design[J]. Rock Mechanics and Rock Engineering,2004,37(5):369 − 389. doi: 10.1007/s00603-004-0027-2
CrossRef Google Scholar
|
[17]
|
SPADARI M, GIACOMINI A, BUZZI O, et al. In situ rockfall testing in New South Wales, Australia[J]. International Journal of Rock Mechanics and Mining Sciences,2012,49:84 − 93. doi: 10.1016/j.ijrmms.2011.11.013
CrossRef Google Scholar
|
[18]
|
FERRARI F, GIANI G P, APUANI T. Why can rockfall normal restitution coefficient be higher than one?[J]. Rend Online Soc Geol It, 2013, 24: 122 − 124.
Google Scholar
|
[19]
|
WYLLIE D C. Calibration of rock fall modeling parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2014,67:170 − 180. doi: 10.1016/j.ijrmms.2013.10.002
CrossRef Google Scholar
|
[20]
|
PFEIFFER T, BOWEN T. Computer simulation of rockfalls[J]. Environmental & Engineering Geoscience,1989,26(1):135 − 146.
Google Scholar
|
[21]
|
ASTERIOU P, TSIAMBAOS G. Empirical model for predicting rockfall trajectory direction[J]. Rock Mechanics and Rock Engineering,2016,49(3):927 − 941. doi: 10.1007/s00603-015-0798-7
CrossRef Google Scholar
|
[22]
|
ASTERIOU P, TSIAMBAOS G. Effect of impact velocity, block mass and hardness on the coefficients of restitution for rockfall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2018,106:41 − 50. doi: 10.1016/j.ijrmms.2018.04.001
CrossRef Google Scholar
|
[23]
|
ASTERIOU P, SAROGLOU H, TSIAMBAOS G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2012,54:103 − 113. doi: 10.1016/j.ijrmms.2012.05.029
CrossRef Google Scholar
|
[24]
|
JI Z M, CHEN Z J, NIU Q H, et al. Laboratory study on the influencing factors and their control for the coefficient of restitution during rockfall impacts[J]. Landslides,2019,16(10):1939 − 1963. doi: 10.1007/s10346-019-01183-x
CrossRef Google Scholar
|
[25]
|
GIACOMINI A, THOENI K, LAMBERT C, et al. Experimental study on rockfall drapery systems for open pit highwalls[J]. International Journal of Rock Mechanics and Mining Sciences,2012,56:171 − 181. doi: 10.1016/j.ijrmms.2012.07.030
CrossRef Google Scholar
|
[26]
|
ANSARI M K, AHMAD M, SINGH R, et al. Correlation between Schmidt hardness and coefficient of restitution of rocks[J]. Journal of African Earth Sciences,2015,104:1 − 5. doi: 10.1016/j.jafrearsci.2015.01.005
CrossRef Google Scholar
|
[27]
|
CHAU K T, WONG R H C, LEE F. Rockfall problems in Hong Kong and some new experimental results for coefficients of restitution[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(4/5):662 − 663.
Google Scholar
|
[28]
|
TURRIN S, HANSS M, SELVADURAI A P S. An approach to uncertainty analysis of rockfall Simulation[J]. Computer Modeling in Engineering & Sciences,2009,52(3):237 − 258.
Google Scholar
|
[29]
|
BUZZI O, GIACOMINI A, SPADARI M. Laboratory investigation on high values of restitution coefficients[J]. Rock Mechanics and Rock Engineering,2012,45(1):35 − 43.
Google Scholar
|
[30]
|
柳万里, 晏鄂川, 魏鹏飞, 等. 落石运动特征试验及影响因素敏感性分析[J]. 山地学报,2021,39(1):47 − 58. [LIU Wanli, YAN Echuan, WEI Pengfei, et al. Experimental study on rockfall and sensitivity analysis of influencing factors[J]. Mountain Research,2021,39(1):47 − 58. (in Chinese with English abstract)
Google Scholar
|
[31]
|
SAKKAS V A, ISLAM M A, STALIKAS C, et al. Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation[J]. Journal of Hazardous Materials,2010,175(1/2/3):33 − 44.
Google Scholar
|
[32]
|
FITYUS S G, GIACOMINI A, BUZZI O. The significance of geology for the morphology of potentially unstable rocks[J]. Engineering Geology,2013,162:43 − 52. doi: 10.1016/j.enggeo.2013.05.007
CrossRef Google Scholar
|