Citation: | LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 157-163. doi: 10.16030/j.cnki.issn.1000-3665.202104002 |
The impact energy dissipation damage of rockfall triggered by strong earthquake is an important indicator of protection engineering design. In order to explore the evolution process of the rolling stone energy consumption damage during the impact process, the law of thermodynamics was used to analyze the energy transfer and dissipation during the impact. By defining the impact energy dissipation damage factor D and Dmax, the theoretical model and applicable model of the rock impact energy dissipation damage are established. Combining engineering examples and back-calculating the ultimate impact force to demonstrate and analyze the model, a generalization and application of the model is proposed. The damage process of the impact energy of the rolling stone satisfies the first law of thermodynamics. The energy mainly contributes to the accumulation of the elastoplastic potential energy of protective engineering. Dmax is affected by the rolling stone mass, elastic modulus, initial velocity of ejection, maximum impact force, and effective area, etc. The maximum impact force continues to increase, and the limit impact energy dissipation damage factor increases. When the curve reaches the intersection point C (1031 kN, 0.9965) of the linear function and the parabolic function image, the curve has an inflection point. The model is extended to obtain the evolution function curve of the impact energy dissipation
damage in a generalized range. In the whole process of the impact energy dissipation damage, there are two damage inflection points at the critical position of the three stages of damage response, damage linearity, and damage progression. As the mass of the rolling stone increases, the maximum impact force increases, and the limit impact energy dissipation damage factor curve first decreases parabolically, then increases linearly, and finally increases parabolically until it reaches infinitely close to 1. A quantitative analysis of the damage nature from the view of energy point is of great significance in the exploration of energy dissipation mechanism of the rolling rock movement process and the design of protection engineering.
[1] | WANG X, XIA Y X, ZHOU T Y. Theoretical analysis of rockfall impacts on the soil cushion layer of protective structures[J]. Advances in Civil Engineering,2018,2018:1 − 18. |
[2] | 王林峰, 刘丽, 唐芬, 等. 基于落石棚洞冲击试验的落石冲击力研究[J]. 防灾减灾工程学报,2018,38(6):973 − 979. [WANG Linfeng, LIU Li, TANG Fen, et al. Research on impact force of falling rocks based on impact test of rock shed cave[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):973 − 979. (in Chinese with English abstract) |
[3] | 吴建利, 胡卸文, 梅雪峰, 等. 落石冲击混凝土板与缓冲层组合结构的动力响应[J]. 水文地质工程地质,2021,48(1):78 − 87. [WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC slab with cushion layer composed ofsandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology,2021,48(1):78 − 87. (in Chinese with English abstract) |
[4] | CAVIEZEL A, DEMMEL S E, RINGENBACH A, et al. Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes[J]. Earth Surface Dynamics,2019,7(1):199 − 210. doi: 10.5194/esurf-7-199-2019 |
[5] | DORREN L K A, BERGER F. Stem breakage of trees and energy dissipation during rockfall impacts[J]. Tree Physiology,2006,26(1):63 − 71. doi: 10.1093/treephys/26.1.63 |
[6] | ZHANG Y L, LIU Z B, SHI C, et al. Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach[J]. Rock Mechanics and Rock Engineering,2018,51(4):1173 − 1191. doi: 10.1007/s00603-017-1385-x |
[7] | ZHU C, WANG D S, XIA X, et al. The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts[J]. Natural Hazards and Earth System Sciences,2018,18(6):1811 − 1823. doi: 10.5194/nhess-18-1811-2018 |
[8] | 杨璐, 李士民, 吴智敏, 等. 滚石对棚洞结构的冲击动力分析[J]. 交通运输工程学报,2012,12(1):25 − 30. [YANG Lu, LI Shimin, WU Zhimin, et al. Dynamic analysis of rock-fall impact on shed tunnel structure[J]. Journal of Traffic and Transportation Engineering,2012,12(1):25 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1637.2012.01.005 |
[9] | 王星, 周天跃, 师江涛, 等. 基于自由落体的落石冲击土层的理论及LS-DYNA模拟研究[J]. 北京交通大学学报,2019,43(4):9 − 17. [WANG Xing, ZHOU Tianyue, SHI Jiangtao, et al. Theoretical and LS-DYNA simulation study of based on the theory of free-fall rockfall’s impact on soil layer[J]. Journal of Beijing Jiaotong University,2019,43(4):9 − 17. (in Chinese with English abstract) doi: 10.11860/j.issn.1673-0291.20190015 |
[10] | 裴向军, 黄润秋, 裴钻, 等. 强震触发崩塌滚石运动特征研究[J]. 工程地质学报,2011,19(4):498 − 504. [PEI Xiangjun, HUANG Runqiu, PEI Zuan, et al. Analysis on the movement characteristics of rolling rock on slope caused by intensive earthquake[J]. Journal of Engineering Geology,2011,19(4):498 − 504. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.04.010 |
[11] | 袁博, 祝介旺. 滚石冲击下棚洞破坏动力响应分析及改进对策—以川藏公路(安久拉山南麓)门式棚洞为例[J]. 水文地质工程地质,2019,46(6):57 − 66. [YUAN Bo, ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: A case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology,2019,46(6):57 − 66. (in Chinese with English abstract) |
[12] | 崔圣华, 裴向军, 黄润秋. 直线型斜坡滚石运动速度特征研究[J]. 工程地质学报,2013,21(6):912 − 919. [CUI Shenghua, PEI Xiangjun, HUANG Runqiu. Analysis on velocity characteristics of rock-fall on slope[J]. Journal of Engineering Geology,2013,21(6):912 − 919. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2013.06.020 |
[13] | 程强, 苏生瑞. 汶川地震崩塌滚石坡面运动特征[J]. 岩土力学,2014,35(3):772 − 776. [CHENG Qiang, SU Shengrui. Movement characteristics of collapsed stones on slopes induced by Wenchuan earthquake[J]. Rock and Soil Mechanics,2014,35(3):772 − 776. (in Chinese with English abstract) |
[14] | 吴建利, 胡卸文, 梅雪峰, 等. 高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应[J]. 水文地质工程地质,2020,47(4):114 − 122. [WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology,2020,47(4):114 − 122. (in Chinese with English abstract) |
[15] | 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3003 − 3010. [XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3003 − 3010. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.17.001 |
[16] | 秦允豪. 热学[M]. 北京: 高等教育出版社, 2011: 189- 304. QIN Yunhao. Hot learning[M]. Beijing: Higher Education Press, 2011: 189 − 304. (in Chinese) |
[17] | 杨桂通. 弹塑性力学引论[M]. 2版. 北京: 清华大学出版社, 2013: 40 − 94. YANG Guitong. Introduction to elasticity and plasticity[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 40 − 94.(in Chinese) |
[18] | 腾保华, 吴明和. 大学物理学(上册)[M]. 2版. 北京: 科学出版社, 2017: 3 − 125. TENG Baohua, WU Minghe. University physics (Volume up)[M]. 2nd ed. Beijing: Science Press, 2017: 3 − 125. (in Chinese) |
[19] | 何亮, 魏玉峰, 潘远阳, 等. 基于能量耗散机制的粗粒土圆度损伤特性分析[J]. 水文地质工程地质,2019,46(5):120 − 126. [HE Liang, WEI Yufeng, PAN Yuanyang, et al. Analyses of roundness damage characteristics of coarse-grained soil based on energy dissipation mechanism[J]. Hydrogeology & Engineering Geology,2019,46(5):120 − 126. (in Chinese with English abstract) |
[20] | 赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报(工程科学版),2008,40(2):26 − 31. [ZHAO Zhonghu, XIE Heping. Energy transfer and energy dissipation in rock deformation and fracture[J]. Journal of Sichuan University (Engineering Science Edition),2008,40(2):26 − 31. (in Chinese with English abstract) |
[21] | 程强, 胡朝旭, 杨绪波. 九寨沟地震区公路沿线地质灾害发育规律及防治对策[J]. 中国地质灾害与防治学报,2018,29(4):114 − 120. [CHENG Qiang, HU Chaoxu, YANG Xubo. Development law and prevention countermeasures of geological hazards along the highway in Jiuzhaigou earthquake area[J]. The Chinese Journal of Geological Hazard and Control,2018,29(4):114 − 120. (in Chinese with English abstract) |
[22] | 何宇航, 裴向军, 梁靖, 等. 基于Rockfall的危岩体危险范围预测及风险评价—以九寨沟景区悬沟危岩体为例[J]. 中国地质灾害与防治学报,2020,31(4):24 − 33. [HE Yuhang, PEI Xiangjun, LIANG Jing, et al. Risk assessment and range prediction of dangerous rock massbased on rockfall: A case study of the Xuangou collapse[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):24 − 33. (in Chinese with English abstract) |
[23] | 黄小福, 张迎宾, 赵兴权, 等. 地震条件下危岩崩塌运动特性的初步探讨[J]. 岩土力学,2017,38(2):583 − 592. [HUANG Xiaofu, ZHANG Yingbin, ZHAO Xingquan, et al. A preliminary study of kinetic characteristic of rock-fall under seismic loading[J]. Rock and Soil Mechanics,2017,38(2):583 − 592. (in Chinese with English abstract) |
[24] | 陈驰, 刘成清, 陈林雅, 等. 落石作用于钢筋混凝土棚洞的冲击力研究[J]. 公路交通科技,2015,32(1):102 − 109. [CHEN Chi, LIU Chengqing, CHEN Linya, et al. Study on impact force of rock-fall onto rock shed tunnel[J]. Journal of Highway and Transportation Research and Development,2015,32(1):102 − 109. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-0268.2015.01.017 |
Evolution process of the impact energy consumption of collapsed rocks
f(x) function image
Relationship between the quality of the rolling stone and the impact force
Relationship between the maximum impact force and Dmax
Damage evolution curve of the rock impact energy consumption