Citation: | ZHU Yanbo, LIU Zhenqian, LI Wenjie, MIAO Shuaisheng, LI Hongfei, LAN Hengxing. Experimental investigation of influencing factors on the long-term strength of sliding zones of the Loess-Hipparion laterite landslide[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 148-156. doi: 10.16030/j.cnki.issn.1000-3665.202104012 |
The Hipparion laterite with strong creep characteristics and obvious strength attenuation after deformation is widely distributed in northwest China. However, previous studies have paid little attention to the long-term strength attenuation of the Hipparion laterite. In order to investigate the time effect of strength of the Hipparion laterite, the creep test of samples under different influence factors is carried out. The long-term strength is calculated by using the isochronal curve method based on the creep curves, and the sensitivity of influencing factors to the long-term strength is analyzed. The results indicate that the Hipparion laterite has strong creep characteristics, which are affected by the density, moisture content of samples and confining pressure. The smaller the dry density, the higher the moisture content of the samples, and the smaller the confining pressure, the greater the deformation of the sample in the creep process. After creep deformation, the strength of the Hipparion laterite decreases obviously with a strength loss rate of 6.67%−34.58%, which varies with the influence factors. The sensitivity of the long-term strength attenuation of the Hipparion laterite is different with the change of the influencing factors. The long-term strength is the most sensitive to the change of water content, followed by the change of confining pressure, and is the lowest with the change of dry density. The change of the strength loss rate of the Hipparion laterite presents different rules. The smaller the dry density is, the higher the water content is, and the lower the confining pressure is, the greater the strength loss rate is. The change range of the long-term strength loss rate is the most sensitive to the change of confining pressure, followed by the change of water content, and the long-term strength loss rate is the lowest with the change of dry density.
[1] | 曲永新, 张永双, 覃祖淼. 三趾马红土与西北黄土高原滑坡[J]. 工程地质学报,1999,7(3):257 − 265. [QU Yongxin, ZHANG Yongshuang QIN Zumiao. Hipparion laterite and landslide hazards on loess plateau of northwestern China[J]. Journal of Engineering Geology,1999,7(3):257 − 265. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.1999.03.011 |
[2] | 文宝萍, 王思敬, 王恩志, 等. 黄土-红层接触面滑坡的变形特征[J]. 地质学报,2005,79(1):144. [WEN Baoping, WANG Sijing, WANG Enzhi, et al. Deformation characteristics of loess red contact surface landslide[J]. Acta Geologica Sinica,2005,79(1):144. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2005.01.026 |
[3] | 张栋平, 胡平. 杜家坪隧道进口红黏土土层作用下滑坡体机理分析[C]//第十二届海峡两岸隧道与地下工程学术与技术研讨会论文集. 峨眉山: 中国土木工程学会, 2013: 1 − 5. ZHANG Dongping, HU Ping. Mechanism analysis of sliding slope under the action of laterite at Dujiaping tunnel entrance[C]//Proceedings of the 12th Cross Strait Symposium on tunnel and underground engineering. Emeishan: Chinese Society of Civil Engineering, 2013: 1 − 5. (in Chinese with English abstract) |
[4] | 孙萍萍, 张茂省, 谷天峰, 等. 吸力可控条件下的北方红黏土蠕变特性[J]. 工程地质学报,2020,28(3):500 − 509. [SUN Pingping, ZHANG Maosheng, GU Tianfeng, et al. Creeping characteristics of northern laterite under controlled matric suctions[J]. Journal of Engineering Geology,2020,28(3):500 − 509. (in Chinese with English abstract) |
[5] | 余小龙, 安玉科. 甘肃徽-成盆地红层工程滑坡特征分析[J]. 中国地质灾害与防治学报, 2015, 26(3): 31 − 35. YU Xiaolong, AN Yuke, Characteristics of engineering landslide in red bed rock area of the Hui-Cheng basin in Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(3): 31 − 35. (in Chinese with English abstract) |
[6] | 张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报,2011,19(4):530 − 540. [ZHANG Maosheng, LI Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology,2011,19(4):530 − 540. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.04.014 |
[7] | 刘虎虎, 缪海波, 陈志伟, 等. 三峡库区侏罗系顺层滑坡滑带土的剪切蠕变特性[J]. 岩土工程学报,2019,41(8):1573 − 1580. [LIU Huhu, MIAO Haibo, CHEN Zhiwei, et al. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering,2019,41(8):1573 − 1580. (in Chinese with English abstract) |
[8] | 周静静, 赵法锁, 袁湘秦, 等. 滑带土蠕变过程及微观结构演化分析[J]. 水文地质工程地质,2020,47(3):115 − 121. [ZHOU Jingjing, ZHAO Fasuo, YUAN Xiangqin, et al. Creep process and the microstructural evolution of sliding-zone soil[J]. Hydrogeology & Engineering Geology,2020,47(3):115 − 121. (in Chinese with English abstract) |
[9] | 罗庆姿, 陈晓平, 袁炳祥, 等. 基于等时曲线的软黏土弹黏塑性模型[J]. 岩土工程学报,2018,40(增刊2):142 − 146. [LUO Qingzi, CHEN Xiaoping, YUAN Bingxiang, et al. Elastic visco-plastic model for soft clay based on isochronous curves[J]. Chinese Journal of Geotechnical Engineering,2018,40(Sup2):142 − 146. (in Chinese with English abstract) |
[10] | 汤连生, 桑海涛, 罗珍贵, 等. 土体抗拉张力学特性研究进展[J]. 地球科学进展,2015,30(3):297 − 309. [TANG Liansheng, SANG Haitao, LUO Zhengui, et al. Advances in research on the mechanical behavior of the tensile strength of soils[J]. Advances in Earth Science,2015,30(3):297 − 309. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2015.03.0297 |
[11] | YIN P H, VANAPALLI S K. Model for predicting tensile strength of unsaturated cohesionless soils[J]. Canadian Geotechnical Journal,2018,55(9):1313 − 1333. doi: 10.1139/cgj-2017-0376 |
[12] | 徐筱, 蔡国庆, 李舰, 等. 非饱和土的峰值强度特性及破坏包线模型[J]. 岩土工程学报,2020,42(7):1211 − 1219. [XU Xiao, CAI Guoqing, LI Jian, et al. Peak strength characteristics and failure envelope model of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering,2020,42(7):1211 − 1219. (in Chinese with English abstract) |
[13] | 程东幸, 刘大安, 丁恩保, 等. 滑带土长期强度参数的衰减特性研究[J]. 岩石力学与工程学报,2005,24(增刊 2):5827 − 5834. [CHENG Dongxing, LIU Da’an, DING Enbao, et al. Study on attenuation characteristics of long-term strength for landslide soil[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(Sup 2):5827 − 5834. (in Chinese with English abstract) |
[14] | DENG H F, ZHOU M L, LI J L, et al. Creep degradation mechanism by water-rock interaction in the red-layer soft rock[J]. Arabian Journal of Geosciences,2016,9(12):1 − 12. |
[15] | 李娜, 陈昌富, 朱世民, 等. 考虑干密度影响的红黏土蠕变特性及蠕变模型研究[J]. 中南大学学报(自然科学版),2020,51(8):2174 − 2182. [LI Na, CHEN Changfu, ZHU Shimin, et al. Research on creep characteristics and creep model of laterite considering effect of dry density[J]. Journal of Central South University (Science and Technology),2020,51(8):2174 − 2182. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2020.08.013 |
[16] | SONE H, ZOBACK M D. Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of stress[J]. International Journal of Rock Mechanics and Mining Sciences,2014,69:120 − 132. doi: 10.1016/j.ijrmms.2014.04.002 |
[17] | 龙建辉, 郭文斌, 李萍, 等. 黄土滑坡滑带土的蠕变特性[J]. 岩土工程学报,2010,32(7):1023 − 1028. [LONG Jianhui, GUO Wenbin, LI Ping, et al. Creep property of soil in sliding zone of loess landslide[J]. Chinese Journal of Geotechnical Engineering,2010,32(7):1023 − 1028. (in Chinese with English abstract) |
[18] | 杨秀荣, 姜谙男, 江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. 岩土力学,2018,39(增刊 1):167 − 174. [YANG Xiurong, JIANG Annan, JIANG Zongbin. Creep test and damage model of soft rock under water containing condition[J]. Rock and Soil Mechanics,2018,39(Sup 1):167 − 174. (in Chinese with English abstract) |
[19] | 古鹏翔, 骆俊晖, 刘先林, 等. 考虑滑带土蠕变特性的边坡长期稳定性分析[J]. 安全与环境工程,2020,27(4):94 − 101. [GU Pengxiang, LUO Junhui, LIU Xianlin, et al. Long-term stability analysis of slope considering creep behaviors of sliding zone soils[J]. Safety and Environmental Engineering,2020,27(4):94 − 101. (in Chinese with English abstract) |
[20] | 陈琼, 崔德山, 王菁莪, 等. 不同固结状态下黄土坡滑坡滑带土的蠕变试验研究[J]. 岩土力学,2020,41(5):1635 − 1642. [CHEN Qiong, CUI Deshan WANG Qing’e, et al. An experimental study of creep characteristics of sliding zone soil of Huangtupo landslide under different consolidation stresses[J]. Rock and Soil Mechanics,2020,41(5):1635 − 1642. (in Chinese with English abstract) |
[21] | 陈秀吉, 陈群, 周承京, 等. 不同相对密实度含软岩堆石料的蠕变特性研究[J]. 岩土工程学报,2020,42(增刊 2):118 − 122. [CHEN Xiuji, CHEN Qun, ZHOU Chengjing, et al. Creep behavior of rockfill with soft rock under different relative densities[J]. Chinese Journal of Geotechnical Engineering,2020,42(Sup 2):118 − 122. (in Chinese with English abstract) |
[22] | VASCONCELLOS J F V, SINGH S, SIVAKUGAN N. Sensitivity analysis of time dependent settlements in hydraulic fills[J]. Geotechnical and Geological Engineering,2010,28(4):351 − 360. doi: 10.1007/s10706-009-9296-6 |
[23] | 辛鹏, 吴树仁, 石菊松, 等. 簸箕山大型老滑坡滑动带的结构特征及形成机制试验研究[J]. 岩石力学与工程学报,2013,32(7):1382 − 1391. [XIN Peng, WU Shuren, SHI Jusong, et al. Structural characteristics of soft-rock slip zone and experimental study of its formation mechanism in Boji mountain large-scale old landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(7):1382 − 1391. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2013.07.013 |
[24] | 杨果岳, 徐运龙, 李良吉, 等. 压实红黏土三轴蠕变特性试验及模型研究[J]. 地下空间与工程学报,2019,15(3):727 − 735. [YANG Guoyue, XU Yunlong, LI Liangji, et al. Research on triaxial creep characteristics test and models of compacted laterite[J]. Chinese Journal of Underground Space and Engineering,2019,15(3):727 − 735. (in Chinese with English abstract) |
[25] | 卢连长, 张泽, 冯文杰, 等. 冻融循环作用下冻结黏土矿物物理力学性质研究[J]. 水文地质工程地质,2017,44(4):118 − 123. [LU Lianchang, ZHANG Ze, FENG Wenjie, et al. Research on variability of freezing-thawing cycle on basic physical and mechanics properties of clay minerals[J]. Hydrogeology & Engineering Geology,2017,44(4):118 − 123. (in Chinese with English abstract) |
[26] | 杨爱武, 郑宇轩, 肖敏. 人工制备结构性软黏土长期变形特性试验研究[J]. 水文地质工程地质,2019,46(2):133 − 140. [YANG Aiwu, ZHENG Yuxuan, XIAO Min. An experimental study of the long-term deformation characteristics of artificial structured soft clay[J]. Hydrogeology & Engineering Geology,2019,46(2):133 − 140. (in Chinese with English abstract) |
[27] | LI J Z, YANG Y L. Matric suction creep characteristics of reticulated laterite[J]. KSCE Journal of Civil Engineering,2018,22(10):3837 − 3842. doi: 10.1007/s12205-018-0650-1 |
[28] | LONG Z L, CHENG Y Z, YANG G Y, et al. Study on triaxial creep test and constitutive model of compacted laterite[J]. International Journal of Civil Engineering,2020:517 − 531. |
[29] | 付昱凯, 张子然. 基于蠕变试验及Burgers模型参数分析的三趾马红土长期强度确定[J]. 科学技术与工程,2020,20(2):735 − 740. [FU Yukai, ZHANG Ziran. Long-term strength determination of hipparion laterite based on creep test and paremeter analysis of Burgers model[J]. Science Technology and Engineering,2020,20(2):735 − 740. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.02.045 |
[30] | 何晓磊. 西安市灞河左岸滑坡形成机理研究[D]. 北京: 中国地质大学(北京), 2014. HE Xiaolei. Research on the formation mechanism of landslide on the left bank of Bahe River in Xi’an: A case study on Chendongpo landslide[D]. Beijing: China University of Geosciences (Beijing), 2014. (in Chinese with English abstract) |
[31] | 陈宗基, 康文法. 岩石的封闭应力、蠕变和扩容及本构方程[J]. 岩石力学与工程学报,1991,10(4):299 − 312. [TAN Tjong-kie, KANG Wenfa. On the locked in stress, creep and dilatation of rocks, and the constitutive equations[J]. Chinese Journal of Rock Mechanics and Engineering,1991,10(4):299 − 312. (in Chinese with English abstract) |
The study area and the test soil(modified from Ref. [30])
Effect of dry density on strength of specimen
Effect of moisture content on strength of specimen
Effect of confining pressure on strength of specimen
Creep curves of the sample with dry density of 1.8 g/cm3
Creep curves of the sample with moisture content of 23%
Creep curves of the sample with confining pressure of 300 kPa
Creep isochronous curve
Isochron curves of the specimens under different conditions
Double logarithmic isochronous curve
Effect of different factors on the long-term strength and strength loss rate of the specimen
Variation of the strength loss rate of the specimen with influence factors