2021 Vol. 48, No. 4
Article Contents

ZHANG Yaling, ZHAO Xiaoyan, YAN Qun. Experimental research on the influence of mica on strength of cement-reinforced soft clay[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 101-108. doi: 10.16030/j.cnki.issn.1000-3665.202011048
Citation: ZHANG Yaling, ZHAO Xiaoyan, YAN Qun. Experimental research on the influence of mica on strength of cement-reinforced soft clay[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 101-108. doi: 10.16030/j.cnki.issn.1000-3665.202011048

Experimental research on the influence of mica on strength of cement-reinforced soft clay

More Information
  • Soft clay is of the characteristics of strong compressibility and low bearing capacity. Cement is used as curing agent to strengthen soft clay in engineering. Mica is a kind of mineral widely distributed in soft clay, and its content and particle size will affect the strength of the cement-reinforced soft clay. The influence law among the mica content and mica mesh number on strength of the cement-reinforced soft clay is studied based on direct shear tests and unconfined compressive strength tests. Based on the experimental data, the mathematical relationship between the content and mesh number of mica and soil-cement strength is established. The number of mica meshes in the experiment is 10, 20, 40 and 80 mesh, and the mica content is set as 0%, 8%, 16% and 32%. The results show that as the content of mica increases or the number of mica meshes decreases, the unconfined compressive strength and shear strength of the cement-reinforced soft clay show a decreasing trend, and the effect of mica on the unconfined compressive strength is more significant. When the number of mica mesh in the cement soft clay is 10 mesh and the content is 32%, the strength of the cement soft clay decreases the most. In this case, the unconfined compressive strength of 0.33 MPa is 25.5% of that of the cement soft clay without mica, the cohesion is 76.5 kPa, which is 12.24 kPa less than that of the cement soft clay without mica, and the internal friction angle decreases from 23.71° to 21.77°. It is speculated that the lamellar morphology of mica and adverse effect on cement hydration are the main reasons for the decrease of the cement soil strength.

  • 加载中
  • [1] 赵春彦, 黄启友, 郎锋, 等. 单因素和多因素作用下的水泥土强度评估模型试验研究[J]. 铁道科学与工程学报,2018,15(11):2788 − 2795. [ZHAO Chunyan, HUANG Qiyou, LANG Feng, et al. Experimental study on strength evaluation model of cement soil under single factor and multi factors[J]. Journal of Railway Science and Engineering,2018,15(11):2788 − 2795. (in Chinese with English abstract)

    Google Scholar

    [2] 刘宝臣, 李翠娟, 潘宗源, 等. 水泥搅拌法改良桂林红黏土力学性质试验研究[J]. 工程地质学报,2012,20(4):633 − 638. [LIU Baochen, LI Cuijuan, PAN Zongyuan, et al. Laboratory test for mechanical properties of Guilin red clay mixed with cement[J]. Journal of Engineering Geology,2012,20(4):633 − 638. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2012.04.022

    CrossRef Google Scholar

    [3] 黄英豪, 朱伟, 张春雷, 等. 固化淤泥重塑土力学性质及其强度来源[J]. 岩土力学,2009,30(5):1352 − 1356. [HUANG Yinghao, ZHU Wei, ZHANG Chunlei, et al. Mechanical characteristics and strength source of remolded solidified dredged material[J]. Rock and Soil Mechanics,2009,30(5):1352 − 1356. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.05.029

    CrossRef Google Scholar

    [4] 车东日. 水泥混合上海软弱黏性土性状的试验研究[D]. 上海: 上海交通大学, 2012.

    Google Scholar

    CHE Dongri. Laboratory investigation on the behavior of cement mixed soft clayey soil of Shanghai[D]. Shanghai: Shanghai Jiaotong University, 2012. (in Chinese with English abstract)

    Google Scholar

    [5] 袁建议, 潘拥军, 汪春峰, 等. 水泥土搅拌桩力学参数的试验分析[J]. 湖北理工学院学报,2013,29(6):42 − 45. [YUAN Jianyi, PAN Yongjun, WANG Chunfeng, et al. Experimental analysis of mechanical parameters of cement- soil mixing pile[J]. Journal of Hubei Polytechnic University,2013,29(6):42 − 45. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-4565.2013.06.011

    CrossRef Google Scholar

    [6] 李振龙, 潘殿琦, 杨书红, 等. 海相淤泥特性水泥土搅拌桩强度影响因素及其变化规律的试验研究[J]. 长春工程学院学报(自然科学版),2015,16(3):16 − 19. [LI Zhenlong, PAN Dianqi, YANG Shuhong, et al. The test study on influencing factors and changing rules to cement-soil mixing pile strength in marine silt characteristics[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition),2015,16(3):16 − 19. (in Chinese with English abstract)

    Google Scholar

    [7] 陈中学, 李文广, 任涛, 等. 水泥土无侧限抗压强度试验分析[J]. 公路交通技术,2016,32(5):4 − 8. [CHEN Zhongxue, LI Wenguang, REN Tao, et al. Unconfined compressive strength test analysis for cement soil[J]. Technology of Highway and Transport,2016,32(5):4 − 8. (in Chinese with English abstract)

    Google Scholar

    [8] 吴家琦, 侯蕊, 李幻, 等. 水泥改良海相沉积淤泥质软黏土无侧限抗压强度试验研究[J]. 路基工程,2019(6):73 − 77. [WU Jiaqi, HOU Rui, LI Huan, et al. Study on cement modified marine sediment silty soft clay by unconfined compressive strength test[J]. Subgrade Engineering,2019(6):73 − 77. (in Chinese with English abstract)

    Google Scholar

    [9] 芮凯军, 李俊才, 杨宇, 等. 不同土质水泥土性质的室内试验[J]. 南京工业大学学报(自然科学版),2019,41(2):173 − 178. [RUI Kaijun, LI Juncai, YANG Yu, et al. Laboratory tests on properties of cement soil with different soils[J]. Journal of Nanjing Tech University (Natural Science Edition),2019,41(2):173 − 178. (in Chinese with English abstract)

    Google Scholar

    [10] 陈慧娥, 王清. 有机质对水泥加固软土效果的影响[J]. 岩石力学与工程学报,2005,24(增刊2):5816 − 5821. [CHEN Hui’e, WANG Qing. Influences of organic matter on the effects of consolidating soft soil with cement[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(Sup2):5816 − 5821. (in Chinese with English abstract)

    Google Scholar

    [11] 邢皓枫, 徐超, 叶观宝, 等. 可溶盐离子对高含盐水泥土强度影响的机理分析[J]. 中国公路学报,2008,21(6):26 − 30. [XING Haofeng, XU Chao, YE Guanbao, et al. Mechanism analysis of influence of soluble salt ions on strength of salt-rich cement-soil[J]. China Journal of Highway and Transport,2008,21(6):26 − 30. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7372.2008.06.005

    CrossRef Google Scholar

    [12] 傅小姝, 王江营, 张贵金, 等. 不同pH值下水泥土力学与渗透特性试验研究[J]. 铁道科学与工程学报,2017,14(8):1639 − 1646. [FU Xiaoshu, WANG Jiangying, ZHANG Guijin, et al. Experimental study about mechanic and permeability of soil-cement in different pH value[J]. Journal of Railway Science and Engineering,2017,14(8):1639 − 1646. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7029.2017.08.010

    CrossRef Google Scholar

    [13] 杨爱武, 闫澍旺, 杜东菊, 等. 碱性环境对固化天津海积软土强度影响的试验研究[J]. 岩土力学,2010,31(9):2930 − 2934. [YANG Aiwu, YAN Shuwang, DU Dongju, et al. Experimental study of alkaline environment effects on the strength of cement soil of Tianjin marine soft soil[J]. Rock and Soil Mechanics,2010,31(9):2930 − 2934. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.09.040

    CrossRef Google Scholar

    [14] 徐金明, 黄亮, 涂齐亮, 等. 使用微观试验确定软土中晶质矿物的类型与含量[J]. 水文地质工程地质,2018,45(1):103 − 110. [XU Jinming, HUANG Liang, TU Qiliang, et al. Determination of types and contents of minerals included in soft soil using microscopic experiments[J]. Hydrogeology & Engineering Geology,2018,45(1):103 − 110. (in Chinese with English abstract)

    Google Scholar

    [15] 赵云. 宁波软土的热物性和热固结特性研究[D]. 赣州: 江西理工大学, 2018.

    Google Scholar

    ZHAO Yun. An investigation on the thermal and thermo-consolidation behaviour of Ningbo soft soil[D]. Ganzhou: Jiangxi University of Science and Technology, 2018. (in Chinese with English abstract)

    Google Scholar

    [16] 李晋骅. 真空预压加固南沙软土过程中排水板淤堵行为试验研究[D]. 广州: 华南理工大学, 2015.

    Google Scholar

    LI Jinhua. Experimental study on clogging behavior of PVD in Nansha soft clay improved by vacuum preloading[D]. Guangzhou: South China University of Technology, 2015. (in Chinese with English abstract)

    Google Scholar

    [17] 张可能, 王彦之, 胡惠华, 等. 洞庭湖砂纹淤泥质土固结过程微观结构变化[J]. 水文地质工程地质,2018,45(1):96 − 102. [ZHANG Keneng, WANG Yanzhi, HU Huihua, et al. An analysis of microstructure changes in sand grain mucky soil of Dongting Lake during consolidation[J]. Hydrogeology & Engineering Geology,2018,45(1):96 − 102. (in Chinese with English abstract)

    Google Scholar

    [18] 周晖. 矿物成分对软土强度性质的影响分析[J]. 工业建筑,2013,43(7):61 − 64. [ZHOU Hui. Analysis of mineral composition impact on soft soil’s strength properties[J]. Industrial Construction,2013,43(7):61 − 64. (in Chinese with English abstract)

    Google Scholar

    [19] 中华人民共和国住房和城乡建设部.水泥土配合比设计规程: JGJ/T 233—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Google Scholar

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of cement soil: JGJ/T 233—2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)

    Google Scholar

    [20] 张跃, 袁代国. 水泥土加固机理及不同成因类型软土配合比试验[J]. 化工矿物与加工,2003,32(5):28 − 29. [ZHANG Yue, YUAN Daiguo. Reinforcement mechanism of cemented soil and test of mixture ratio of different types of soft clay[J]. Industrial Minerals and Processing,2003,32(5):28 − 29. (in Chinese) doi: 10.3969/j.issn.1008-7524.2003.05.010

    CrossRef Google Scholar

    [21] 黄新, 周国钧. 水泥加固土硬化机理初探[J]. 岩土工程学报,1994,16(1):62 − 68. [HUANG Xin, ZHOU Guojun. Hardening mechanism of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering,1994,16(1):62 − 68. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1994.01.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(6)

Article Metrics

Article views(979) PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint