2021 Vol. 48, No. 4
Article Contents

LIU Leqing, ZHANG Wuyu, ZHANG Bingyin, GU Yuxi, XIE Banglong. Effect of freezing-thawing cycles on mechanical properties and microscopic mechanisms of loess[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 109-115. doi: 10.16030/j.cnki.issn.1000-3665.202009064
Citation: LIU Leqing, ZHANG Wuyu, ZHANG Bingyin, GU Yuxi, XIE Banglong. Effect of freezing-thawing cycles on mechanical properties and microscopic mechanisms of loess[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 109-115. doi: 10.16030/j.cnki.issn.1000-3665.202009064

Effect of freezing-thawing cycles on mechanical properties and microscopic mechanisms of loess

More Information
  • Qinghai is located in a permafrost region, which belongs to the continental climate zone of the the Qinghai-Tibet Plateau. At the same time, freezing-thawing cycles are common destructive factors for roadbeds and foundations. In order to examine the effects of freezing-thawing cycles on actual projects in Qinghai and reveal the mechanisms of freezing-thawing cycles on damage of the projects, the freezing-thawing cycle test, unconfined compressive strength test and electron microscope scanning test of the undisturbed loess and remolded loess in the Xining area of Qinghai are conducted to analyze the influence of different freezing-thawing temperatures and different freezing-thawing cycles on the strength and microstructure of the undisturbed loess and remolded loess. The results show that when the loess undergoes 0-6 freezing-thawing cycles, the strength of the undisturbed loess and remolded loess gradually decreases. After 8-10 freezing-thawing cycles, the unconfined compressive strength of the loess first increases and then tends to be basically stable. The strength of the undisturbed loess decreases with the decrease of the freezing and thawing temperature. However, the strength of the remolded loess first increases and then decreases with the decrease of temperature. From a microscopic point of view, the decrease in freezing-thawing temperature and the increase in the number of freezing-thawing cycles both lead to the decomposition of large loess particles into small particles, and the arrangement of the particles has changed. The results are of reference value for actual project construction and construction in the Xining area of Qinghai.

  • 加载中
  • [1] 张吾渝. 黄土工程[M]. 北京: 中国建材工业出版社, 2018.

    Google Scholar

    ZHANG Wuyu. Loess engineering[M]. Beijing: China Building Material Industry Publishing House, 2018. (in Chinese)

    Google Scholar

    [2] 李宝平, 平高权, 张玉, 等. 平面应变条件下冻融循环对黄土力学性质的影响[J/OL]. 土木与环境工程学报(中英文): 1-8 [2020-09-17].

    Google Scholar

    LI Baoping, PING Gaoquan, ZHANG Yu, et al. Effects of freeze-thaw cycles on mechanical properties of loess under plane strain[[J/OL]. Journal of Civil and Environmental Engineering: 1-8[2020-09-17]. http://kns.cnki.net/kcms/detail/50.1218.TU.20200423.1009.002.html. (in Chinese with English abstract)

    Google Scholar

    [3] 张遂, 匡航, 靳占英, 等. 高含水量冻粉黏土应力-应变曲线特性的试验研究[J]. 水文地质工程地质,2020,47(5):116 − 124. [ZHANG Sui, KUANG Hang, JIN Zhanying, et al. An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content[J]. Hydrogeology & Engineering Geology,2020,47(5):116 − 124. (in Chinese with English abstract)

    Google Scholar

    [4] 周有禄, 武小鹏, 李奋, 等. 冻融循环作用下重塑黄土强度劣化试验研究[J]. 铁道建筑,2018,58(10):78 − 80. [ZHOU Youlu, WU Xiaopeng, LI Fen, et al. Experimental study on strength deterioration of remolded loess under freeze-thaw cycles[J]. Railway Engineering,2018,58(10):78 − 80. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-1995.2018.10.19

    CrossRef Google Scholar

    [5] LI G Y, WANG F, MA W, et al. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles[J]. Cold Regions Science and Technology,2018,151:159 − 167. doi: 10.1016/j.coldregions.2018.03.021

    CrossRef Google Scholar

    [6] 柯睿, 汪洪星, 谈云志, 等. 冻融循环对固化淤泥土力学性质的影响[J]. 长江科学院院报,2019,36(8):136 − 139. [KE Rui, WANG Hongxing, TAN Yunzhi, et al. Effect of freeze-thaw cycle on mechanical properties of solidified silt[J]. Journal of Yangtze River Scientific Research Institute,2019,36(8):136 − 139. (in Chinese with English abstract) doi: 10.11988/ckyyb.20180046

    CrossRef Google Scholar

    [7] 崔宏环, 秦晓鹏, 王文涛, 等. 冻融条件下非饱和路基土的强度及微观特性研究[J]. 冰川冻土,2019,41(5):1115 − 1121. [CUI Honghuan, QIN Xiaopeng, WANG Wentao, et al. Study on the strength and microscopic characteristics of unsaturated subgrade soil under freezing-thawing conditions[J]. Journal of Glaciology and Geocryology,2019,41(5):1115 − 1121. (in Chinese with English abstract)

    Google Scholar

    [8] 杨更社, 尤梓玉, 吴迪, 等. 冻融环境下原状黄土孔径分布与其力学特性关系的试验研究[J]. 煤炭工程,2019,51(3):107 − 112. [YANG Gengshe, YOU Ziyu, WU Di, et al. Experimental study on the relation of undisturbed loess' pore size distribution and mechanical property under freezing-thawing environment[J]. Coal Engineering,2019,51(3):107 − 112. (in Chinese with English abstract)

    Google Scholar

    [9] 魏尧, 杨更社, 叶万军. 冻结温度对冻融黄土力学特性的影响规律研究[J]. 长江科学院院报,2018,35(8):61 − 66. [WEI Yao, YANG Gengshe, YE Wanjun. Impact of freezing temperature on mechanical properties of loess under cyclic freezing and thawing[J]. Journal of Yangtze River Scientific Research Institute,2018,35(8):61 − 66. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170188

    CrossRef Google Scholar

    [10] 叶万军, 刘宽, 杨更社, 等. 冻融循环作用下黄土抗剪强度劣化试验研究[J]. 科学技术与工程,2018,18(3):313 − 318. [YE Wanjun, LIU Kuan, YANG Gengshe, et al. Experimental study on shear strength deterioration of loess under freeze-thaw cycling[J]. Science Technology and Engineering,2018,18(3):313 − 318. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2018.03.051

    CrossRef Google Scholar

    [11] 叶万军, 李长清, 董西好, 等. 冻融环境下黄土微结构损伤识别与宏观力学响应规律研究[J]. 冰川冻土,2018,40(3):546 − 555. [YE Wanjun, LI Changqing, DONG Xihao, et al. Study on damage identification of loess microstructure and macro mechanical response under freezing and thawing conditions[J]. Journal of Glaciology and Geocryology,2018,40(3):546 − 555. (in Chinese with English abstract)

    Google Scholar

    [12] 张泽, 周泓, 秦琦, 等. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版),2017,47(3):839 − 847. [ZHANG Ze, ZHOU Hong, QIN Qi, et al. Experimental study on porosity characteristics of loess under freezing-thawing cycle[J]. Journal of Jilin University (Earth Science Edition),2017,47(3):839 − 847. (in Chinese with English abstract)

    Google Scholar

    [13] 赵鲁庆, 杨更社, 吴迪, 等. 冻融黄土微观结构变化规律及分形特性研究[J]. 地下空间与工程学报,2019,15(6):1680 − 1690. [ZHAO Luqing, YANG Gengshe, WU Di, et al. Micro structure and fractal characteristics loess under freeze-thaw cycles[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1680 − 1690. (in Chinese with English abstract)

    Google Scholar

    [14] 肖东辉, 冯文杰, 张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土,2014,36(4):907 − 912. [XIAO Donghui, FENG Wenjie, ZHANG Ze. The changing rule of loess’s porosity under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology,2014,36(4):907 − 912. (in Chinese with English abstract)

    Google Scholar

    [15] 肖东辉, 冯文杰, 张泽, 等. 冻融循环作用下黄土渗透性与其结构特征关系研究[J]. 水文地质工程地质,2015,42(4):43 − 49. [XIAO Donghui, FENG Wenjie, ZHANG Ze, et al. Research on the relationship between permeability and construction feature of loess under the freeze-thaw cycles[J]. Hydrogeology & Engineering Geology,2015,42(4):43 − 49. (in Chinese with English abstract)

    Google Scholar

    [16] 倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土,2014,36(4):922 − 927. [NI Wankui, SHI Huaqiang. Influence of freezing-thawing cycles on micro-structure and shear strength of loess[J]. Journal of Glaciology and Geocryology,2014,36(4):922 − 927. (in Chinese with English abstract) doi: 10.7522/j.issn.1000-0240.2014.0111

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(1284) PDF downloads(136) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint