2021 Vol. 48, No. 5
Article Contents

REN Wang, WANG Jiading, BIAN Xiaorui. A study of fissures evolution of the Neogene clay complexs under wetting and drying cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 161-167. doi: 10.16030/j.cnki.issn.1000-3665.202009041
Citation: REN Wang, WANG Jiading, BIAN Xiaorui. A study of fissures evolution of the Neogene clay complexs under wetting and drying cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 161-167. doi: 10.16030/j.cnki.issn.1000-3665.202009041

A study of fissures evolution of the Neogene clay complexs under wetting and drying cycles

More Information
  • In the present investigation, laboratorial test is conducted to examine the evolution law of fissures of the Wuxiang clay complexs under wetting and drying cycles. The oven drying method and the water film transfer method are employed to simulate the drying and wetting process, respectively. Digital photography and weighing are used to record the changes of fissures in each drying and wetting process, so as to conduct qualitative analyses. Matlab is applied to image processing to obtain the geometric feature values in the evolution process of fissures. The evolution rules of fissures are obtained by combining qualitative analyses and quantitative analyses, including: (1) in the drying process, the fissure rate of the clay complexs increases continuously and finally tends to be stable, and the first and second drying have the greatest influence on the fissure rate. In terms of the geometric characteristics, the fissures first grow and develop in all directions along the middle large fissure, and then turn to form a new large fissure with the increase number of cycles. (2) In the wetting process, the clay complexs expands when it absorbs water, and the fissures gradually tend to close, but the plastic deformation occurs. With the increasing wetting times, the accumulated deformation gradually decreases. After the fifth drying and wetting cycle, the accumulated deformation basically disappears, and the soil structure returns to a relatively uniform loose structure.

  • 加载中
  • [1] DE KIMPE C R. Effect of air-drying and critical point drying on the porosity of clay soils[J]. Canadian Geotechnical Journal,1984,21(1):181 − 185. doi: 10.1139/t84-015

    CrossRef Google Scholar

    [2] KNODEL P C, DIF A E, BLUEMEL W F. Expansive soils under cyclic drying and wetting[J]. Geotechnical Testing Journal,1991,14(1):96. doi: 10.1520/GTJ10196J

    CrossRef Google Scholar

    [3] 张祖莲, 梁谏杰, 黄英, 等. 干湿循环作用下红土抗剪强度与微结构关系研究[J]. 水文地质工程地质,2018,45(3):78 − 85. [ZHANG Zulian, LIANG Jianjie, HUANG Ying, et al. A study of the relationship between shear strength and microstructure of laterite under drying and wetting cycles[J]. Hydrogeology & Engineering Geology,2018,45(3):78 − 85. (in Chinese with English abstract)

    Google Scholar

    [4] 胡小芳, 胡大为, 吴成宝. 多孔介质粘土颗粒群的粒径分布分形维[J]. 华南理工大学学报(自然科学版),2006,34(5):99 − 102. [HU Xiaofang, HU Dawei, WU Chengbao. Fractal dimension of size distribution of particle group in porous medium clay[J]. Journal of South China University of Technology (Natural Science Edition),2006,34(5):99 − 102. (in Chinese with English abstract)

    Google Scholar

    [5] 张晓蕾. 基于矿物成分的沉积岩岩性与岩石粒度的关系及其岩性组合特征研究[D]. 西安: 西北大学, 2018.

    Google Scholar

    ZHANG Xiaolei. Relationship between sedimentary lithology based on mineral composition and granularity and the characteristics of their sedimentary lithologic combination[D]. Xi’an: Northwest University, 2018. (in Chinese with English abstract)

    Google Scholar

    [6] 张永双, 曲永新, 周瑞光. 南水北调中线工程上第三系膨胀性硬粘土的工程地质特性研究[J]. 工程地质学报,2002,10(4):367 − 377. [ZHANG Yongshuang, QU Yongxin, ZHOU Ruiguang. Engineering geological properties of Neogene hard clay along the middle line of the north-south diversion water project in China[J]. Journal of Engineering Geology,2002,10(4):367 − 377. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2002.04.005

    CrossRef Google Scholar

    [7] 朱楠, 刘春原, 王文静, 等. 衡水湖地区湿地湖泊相黏土工程地质特性研究[J]. 水文地质工程地质,2020,47(1):125 − 132. [ZHU Nan, LIU Chunyuan, WANG Wenjing, et al. Investigation of engineering geological characteristics of the marshy and lacustrine clays in the Hengshui Lake area[J]. Hydrogeology & Engineering Geology,2020,47(1):125 − 132. (in Chinese with English abstract)

    Google Scholar

    [8] 杨爱武, 郑宇轩, 肖敏. 人工制备结构性软黏土长期变形特性试验研究[J]. 水文地质工程地质,2019,46(2):133 − 140. [YANG Aiwu, ZHENG Yuxuan, XIAO Min. An experimental study of the long-term deformation characteristics of artificial structured soft clay[J]. Hydrogeology & Engineering Geology,2019,46(2):133 − 140. (in Chinese with English abstract)

    Google Scholar

    [9] CHEN R, XU T, LEI W D, et al. Impact of multiple drying-wetting cycles on shear behaviour of an unsaturated compacted clay[J]. Environmental Earth Sciences,2018,77(19):1 − 9.

    Google Scholar

    [10] 刘晓红, 杨果林, 方薇. 红粘土动本构关系与动模量衰减模型[J]. 水文地质工程地质,2011,38(3):66 − 72. [LIU Xiaohong, YANG Guolin, FANG Wei. Dynamic constitutive relation and dynamic modulus attenuation model of red clay[J]. Hydrogeology & Engineering Geology,2011,38(3):66 − 72. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.03.012

    CrossRef Google Scholar

    [11] 杨和平, 张锐, 郑健龙. 有荷条件下膨胀土的干湿循环胀缩变形及强度变化规律[J]. 岩土工程学报,2006,28(11):1936 − 1941. [YANG Heping, ZHANG Rui, ZHENG Jianlong. Variation of deformation and strength of expansive soil during cyclic wetting and drying under loading condition[J]. Chinese Journal of Geotechnical Engineering,2006,28(11):1936 − 1941. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2006.11.004

    CrossRef Google Scholar

    [12] 张永双, 曲永新. 硬土/软岩(岩土间新类型)的确认及其判别分类的探讨[C]// 全国工程地质大会, 2000.

    Google Scholar

    ZHANG Yongshuang, QU Yongxin. Confirmation of hard soil/soft rock (a new type between rock and soil) and discussion on its discriminant classification [C]// National Engineering Geology Congress, 2000. (in Chinese)

    Google Scholar

    [13] 李滨, 吴树仁, 石菊松, 等. 陕西宝鸡市三趾马红土工程地质特性及灾害效应[J]. 地质通报,2013,32(12):1918 − 1924. [LI Bin, WU Shuren, SHI Jusong, et al. Engineering geological properties and hazard effects of Hipparion laterite in Baoji, Shaanxi Province[J]. Geological Bulletin of China,2013,32(12):1918 − 1924. (in Chinese with English abstract)

    Google Scholar

    [14] 韩贝传, 曲永新, 张永双. 裂隙型硬粘土的力学模型及其在边坡工程中的应用[J]. 工程地质学报,2001,9(2):204 − 208. [HAN Beichuan, QU Yongxin, ZHANG Yongshuang. Mechanical model for cracked hard clay and its application to slopes engineering in Nanyang basin[J]. Journal of Engineering Geology,2001,9(2):204 − 208. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2001.02.016

    CrossRef Google Scholar

    [15] 王家鼎, 王建斌, 谷天峰, 等. 水-力耦合作用下三趾马红土围岩变形特征研究[J]. 工程地质学报,2016,24(6):1157 − 1169. [WANG Jiading, WANG Jianbin, GU Tianfeng, et al. Research on the deformation characteristics of the surrounding rock about hipparion red clay under the action of water-force coupling[J]. Journal of Engineering Geology,2016,24(6):1157 − 1169. (in Chinese with English abstract)

    Google Scholar

    [16] 易顺民, 赵文谦. 单轴压缩条件下三峡坝基岩石破裂的分形特征[J]. 岩石力学与工程学报,1999,18(5):520 − 523. [YI Shunmin, ZHAO Wenqian. The fractal characteristics of rock fracture in dam foundation of the Three Gorges project under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(5):520 − 523. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.1999.05.006

    CrossRef Google Scholar

    [17] 袁俊平, 卢毅, 韩翔宇, 等. 岩土体孔隙结构研究中的CT图像处理方法比较[J]. 河北工程大学学报(自然科学版),2019,36(4):51 − 57. [YUAN Junping, LU Yi, HAN Xiangyu, et al. Comparison of CT image processing methods in the study of pore structure of rock and soil mass[J]. Journal of Hebei University of Engineering (Natural Science Edition),2019,36(4):51 − 57. (in Chinese with English abstract)

    Google Scholar

    [18] 马佳, 陈善雄, 余飞, 等. 裂土裂隙演化过程试验研究[J]. 岩土力学,2007,28(10):2203 − 2208. [MA Jia, CHEN Shanxiong, YU Fei, et al. Experimental research on crack evolution process in fissured clay[J]. Rock and Soil Mechanics,2007,28(10):2203 − 2208. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2007.10.038

    CrossRef Google Scholar

    [19] 熊俊豪, 刘宝臣, 刘磊, 等. 基于摄影法的红黏土裂隙试验研究[J]. 地下空间与工程学报,2020,16(2):381 − 387. [XIONG Junhao, LIU Baochen, LIU Lei, et al. A method for crack image processing of red clay[J]. Chinese Journal of Underground Space and Engineering,2020,16(2):381 − 387. (in Chinese with English abstract)

    Google Scholar

    [20] 胡世昆. 基于数字图像处理技术的路面裂缝检测算法研究[D]. 南京: 南京邮电大学, 2012.

    Google Scholar

    HU Shikun. Research on pavement crack detection algorithom based on digital image processing[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2012. (in Chinese with English abstract)

    Google Scholar

    [21] 厉荣宣, 沈希忠, 张树行, 等. 基于图像处理的轴类零件表面裂纹检测[J]. 图学学报,2015,36(1):62 − 67. [LI Rongxuan, SHEN Xizhong, ZHANG Shuhang, et al. Surface crack detection of shaft components based on image processing[J]. Journal of Graphics,2015,36(1):62 − 67. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-302X.2015.01.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(1394) PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint