2021 Vol. 48, No. 5
Article Contents

WU Rui’an, MA Haishan, ZHANG Juncai, YANG Zhihua, LI Xue, NI Jiawei, ZHONG Ning. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 120-128. doi: 10.16030/j.cnki.issn.1000-3665.202104036
Citation: WU Rui’an, MA Haishan, ZHANG Juncai, YANG Zhihua, LI Xue, NI Jiawei, ZHONG Ning. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 120-128. doi: 10.16030/j.cnki.issn.1000-3665.202104036

Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River

More Information
  • The Woda landslide in the upper reaches of the Jinshajiang River, has been deformed since 1985, whose surface deformation characteristics are obvious now. There is a potential risk that the landslide will slide further and block the Jinshajiang River. Based on the remote sensing interpretation, field investigation, engineering geological drilling and comprehensive monitoring, the spatial structure and deformation characteristics of the landslide are analyzed, the potential reactivation instability pattern of the landslide is clarified, and the risk of landslide blocking river is discussed by empirical formula calculation. The results show that the Woda landslide is a huge landslide with a volume of about 28.81×106 m3. It is speculated that the landslide had undergone massive sliding before the late Pleistocene. The whole landslide is currently creeping, and the local part of the landslide is in the accelerated deformation stage. The deformation range of reactivation zone is mainly concentrated in the middle and front parts, and the failure characteristics are progressive backward. The deformation on the right side of the reactivation zone is stronger than that on the left side. There are two sliding zones developing in the landslide, namely the shallow zone and deep sliding zone, whose average depth is about 15 m and 25.5 m, respectively. Accordingly, the landslide can be reactivated with two potential failure modes: the shallow slip and deep slip with progressive failure mode. When the sliding mass in the strong deformation area of the Woda landslide slides along the shallow sliding zone, the height of the landslide dam formed is about 87.2 m. If the whole sliding mass slides along the deep sliding zone, the height of the landslide dam formed is about 129.2 m. The Woda landslide has the risk of landslide-damming-outburst-flood chain disaster. It is suggested to further strengthen landslide monitoring and carry out drainage, reinforcement and other prevention works. This study can offer certain reference for preventing and controlling large geological disaster chain in the upper reaches of the Jinshajiang River.

  • 加载中
  • [1] 彭建兵, 马润勇, 卢全中, 等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展,2004,19(3):457 − 466. [PENG Jianbing, MA Runyong, LU Quanzhong, et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences,2004,19(3):457 − 466. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2004.03.018

    CrossRef Google Scholar

    [2] CHEN J, ZHOU W, CUI Z J, et al. Formation process of a large paleolandslide-dammed lake at Xuelongnang in the upper Jinsha River, SE Tibetan Plateau: constraints from OSL and 14C dating[J]. Landslides,2018,15(12):2399 − 2412. doi: 10.1007/s10346-018-1056-3

    CrossRef Google Scholar

    [3] 徐则民. 金沙江寨子村滑坡坝堰塞湖沉积及其对昔格达组地层成因的启示[J]. 地质论评,2011,57(5):675 − 686. [XU Zemin. Deposits of Zhaizicun landslide-dammed lake along Jinsha River and its implication for the genesis of Xigeda formation[J]. Geological Review,2011,57(5):675 − 686. (in Chinese with English abstract)

    Google Scholar

    [4] 陈剑平, 李会中. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理[J]. 吉林大学学报(地球科学版),2016,46(4):1153 − 1167. [CHEN Jianping, LI Huizhong. Genetic mechanism and disasters features of complicated structural rock mass along the rapidly uplift section at the upstream of Jinsha River[J]. Journal of Jilin University: Earth Science Edition,2016,46(4):1153 − 1167. (in Chinese with English abstract)

    Google Scholar

    [5] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)

    Google Scholar

    [6] FAN X M, XU Q, ALONSO-RODRIGUEZ A, et al. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response[J]. Landslides,2019,16(5):1003 − 1020. doi: 10.1007/s10346-019-01159-x

    CrossRef Google Scholar

    [7] OUYANG C J, AN H C, ZHOU S, et al. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China[J]. Landslides,2019,16(7):1397 − 1414. doi: 10.1007/s10346-019-01177-9

    CrossRef Google Scholar

    [8] 邓建辉, 高云建, 余志球, 等. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术,2019,51(1):9 − 16. [DENG Jianhui, GAO Yunjian, YU Zhiqiu, et al. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Advanced Engineering Sciences,2019,51(1):9 − 16. (in Chinese with English abstract)

    Google Scholar

    [9] 王立朝, 温铭生, 冯振, 等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):5 − 13. [WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the Baige landslide at Jinshajiang River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):5 − 13. (in Chinese with English abstract)

    Google Scholar

    [10] 张永双, 巴仁基, 任三绍, 等. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质,2020,47(6):1637 − 1645. [ZHANG Yongshuang, BA Renji, REN Sanshao, et al. Analysis on geo-mechanism of the Baige landslide in Jinsha River, Tibet, China[J]. Geology in China,2020,47(6):1637 − 1645. (in Chinese with English abstract)

    Google Scholar

    [11] 陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版),2019,44(9):1342 − 1354. [LU Huiyan, LI Weile, XU Qiang, et al. Early detection of landslides in the upstream and downstream areas of the Baige landslide, the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University,2019,44(9):1342 − 1354. (in Chinese with English abstract)

    Google Scholar

    [12] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957 − 966. [XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957 − 966. (in Chinese with English abstract)

    Google Scholar

    [13] 朱赛楠, 殷跃平, 王猛, 等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究—以金沙江色拉滑坡为例[J]. 岩土工程学报,2021,43(4):688 − 697. [ZHU Sainan, YIN Yueping, WANG Meng, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: case study of Sela landslide in Jinsha River, Tibet[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):688 − 697. (in Chinese with English abstract)

    Google Scholar

    [14] 李雪, 郭长宝, 杨志华, 等. 金沙江断裂带雄巴巨型古滑坡发育特征与形成机理[J]. 现代地质,2021,35(1):47 − 55. [LI Xue, GUO Changbao, YANG Zhihua, et al. Development characteristics and formation mechanism of the Xiongba giant ancient landslide in the Jinsha River tectonic zone, China[J]. Geoscience,2021,35(1):47 − 55. (in Chinese with English abstract)

    Google Scholar

    [15] 西藏自治区地质调查院. 中华人民共和国区域地质调查报告(1∶250000)囊谦县幅、昌都县幅、江达县幅[R]. 2007.

    Google Scholar

    Geological Survey Institute of Tibet Autonomous Region. Regional geological survey report of the People’s Republic of China (1∶250000), Nangqian county, Changdu county, Jiangda county[R]. 2007. (in Chinese)

    Google Scholar

    [16] 冯文凯, 顿佳伟, 易小宇, 等. 基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析[J]. 工程地质学报,2020,28(2):384 − 393. [FENG Wenkai, DUN Jiawei, YI Xiaoyu, et al. Deformation analysis of Woda village old landslide in Jinsha River basin using SBAS-InSAR technology[J]. Journal of Engineering Geology,2020,28(2):384 − 393. (in Chinese with English abstract)

    Google Scholar

    [17] 张永双, 郭长宝, 姚鑫, 等. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报,2016,37(3):277 − 286. [ZHANG Yongshuang, GUO Changbao, YAO Xin, et al. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica,2016,37(3):277 − 286. (in Chinese with English abstract) doi: 10.3975/cagsb.2016.03.03

    CrossRef Google Scholar

    [18] 谌威, 许模, 郭健, 等. 山区中小型水库滑坡堵江预测及负效应分析[J]. 南水北调与水利科技,2016,14(1):155 − 160. [CHEN Wei, XU Mo, GUO Jian, et al. Prediction of landslide damming in medium and small-sized reservoir, mountainous area and its negative effects[J]. South-to-North Water Transfers and Water Science & Technology,2016,14(1):155 − 160. (in Chinese with English abstract)

    Google Scholar

    [19] 黄润秋, 王士天, 张倬元, 等. 中国西南地壳浅表层动力学过程及其工程环境效应研究[M]. 成都: 四川大学出版社, 2001.

    Google Scholar

    HUANG Runqiu, WANG Shitian, ZHANG zhuoyuan, et al. The dynamic process of earth’s superficial crust and its engineering environmental effects[M]. Chengdu: Sichuan University Press, 2001. (in Chinese)

    Google Scholar

    [20] 刘威, 何思明. 金沙江沃达潜在滑坡诱发灾害链成灾过程数值模拟[J]. 工程科学与技术,2020,52(2):38 − 46. [LIU Wei, HE Siming. Numerical simulation of the evolution process of disaster chain induced by potential landslide in Woda of Jinsha River basin[J]. Advanced Engineering Sciences,2020,52(2):38 − 46. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(2302) PDF downloads(142) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint