2020 Vol. 47, No. 5
Article Contents

ZHAO Kefeng, WANG Jinguo, CAO Huiqun. 2020. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures. Hydrogeology & Engineering Geology, 47(5): 43-55. doi: 10.16030/j.cnki.issn.1000-3665.202001019
Citation: ZHAO Kefeng, WANG Jinguo, CAO Huiqun. 2020. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures. Hydrogeology & Engineering Geology, 47(5): 43-55. doi: 10.16030/j.cnki.issn.1000-3665.202001019

Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures

  • For the study of the spatial and temporal distribution of oil pollutants in unsaturated zones, it is difficult to quantitatively analyze the migration mechanism in laboratory and field tests are costly and damages the foundation. Numerical simulation, as a widely used and mature method, can be used to analyze the movement of oil pollutants in unsaturated zones. In order to examine the spatial and temporal distribution law of LNAPL (light non-aqueous phase liquids) in the unsaturated zone with single fractures during the single-well extraction and in-situ flushing remediation, in this paper a numerical model is established to analyze the effect under different conditions. The results show that LNAPL preferentially flows into fractures when injected, and preferentially flows out of the fractures when the injection is stopped. The single well extraction remediation simulation show that the larger the extraction flow, the higher the remediation efficiency. The in-situ flushing technology can effectively replenish groundwater and prevent new environmental problems. The injection wells play the role of “flushing” and diluting pollutants. Under the optimal scheme, the remediation area reaches 96%, the remediation rate reaches 75%, and the LNAPL saturation is controlled at 0.05. The comparative analysis indicates that the water injection wells have the best effect when placed on the upper boundary of the pollutant, and can effectively “flush” the pollutants and carry them to the extraction well and to the land surface. The research conclusions provide a scientific theoretical basis and effective assessment methods for the remediation of soil and groundwater contaminated by light oil.
  • 加载中
  • [1] 胡黎明,武晓峰,刘培斌,等.储油设施渗漏污染过程与修复技术[C]//岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会论文集.北京:中国岩石力学与工程学会,2010:98-105.[HU L M, WU X F, LIU P B, et al. Contamination process and remediation technology due to leakage of petroleum storage facilities[C]//Chinese Society for Rock Mechanics & Engineering. Innovation and Practice of Rock Mechanics and Engineering:Proceedings of the 11th National Conference on Rock Mechanics and Engineering. Beijing:Chinese Society for Rock Mechanics and Engineering, 2010:98-105.(in Chinese)]

    Google Scholar

    [2] 李晔.LNAPLs在包气带中运移的算法研究及其数值模拟[D].长春:吉林大学,2014.[LI Y. Algorithm of LNAPLs migration and its numerical simulation[D]. Changchun:Jilin University,2014.(in Chinese)]

    Google Scholar

    [3] 李永涛. LNAPLs在包气带中运移机理及模拟研究[D].西安:长安大学,2010.[LI Y T. Study on migration mechanism and simulation of light nonaqueous-phase liquids in vadose zone[D]. Xi'an:Chang'an University,2010.(in Chinese)]

    Google Scholar

    [4] 王磊,龙涛,张峰,等. 用于土壤及地下水修复的多相抽提技术研究进展[J]. 生态与农村环境学报,2014,30(2):137-145.[WANG L, LONG T, ZHANG F, et al. Advancement in development of multi-phase extraction (MPE) technology for remediation of soil and groundwater[J]. Journal of Ecology and Rural Environment,2014,30(2):137-145.(in Chinese)]

    Google Scholar

    [5] RALENA RACHEVA, NICK TIETGENS, MARTIN KERNER, et al. In situ continuous countercurrent cloud point extraction of microalgae cultures[J]. Separation and Purification Technology,2018,190:268-277.

    Google Scholar

    [6] 张祥.有机污染场地原位多相抽提修复研究进展[J].应用化工,2020,49(1):207-211.[ZHANG X. Research progress in the organic contaminated sites remediation by in situ multi-phase extraction technology[J]. Applied Chemical Industry,2020,49(1):207-211.(in Chinese)]

    Google Scholar

    [7] 王静,张峰,刘路.多相抽提技术的发展现状与展望[J].广州化工,2019,47(8):14-18.[WANG J, ZHANG F, LIU L. Overview and prospect of multi-phase extraction (MPE) technology[J]. Guangzhou Chemical Industry,2019,47(8):14-18.(in Chinese)]

    Google Scholar

    [8] 张云达,顾春杰,何健,等.多相抽提技术在有机复合污染场地治理中的应用[J].上海建设科技,2018(1):71-74.[ZHANG Y D, GU C J, HE J, et al. Application of multiphase extraction technology in the treatment of organic compound polluted sites[J]. Shanghai Construction Technology,2018(1):71-74.(in Chinese)]

    Google Scholar

    [9] 王锦淮,顾春杰.多相抽提+原位化学氧化联合技术在有机污染场地的工程应用[J].上海化工,2017,42(12):20-24.[WANG J H, GU C J. Engineering application of multiphase extraction and in-situ chemical oxidation combined technology in organic contaminated sites[J]. Shanghai Chemical Industry,2017,42(12):20-24.(in Chinese)]

    Google Scholar

    [10] 桂时乔,马烈,张芝兰,等.石油烃类污染地下水的汽提和原位化学氧化修复[J].环境科技,2013,26(3):48-50.[GUI S Q, MA L, ZHANG L Z, et al. Remediation of TPH contaminated site by air lifting recovery and in situ chemical oxidation[J]. Environmental Science and Technology,2013,26(3):48-50.(in Chinese)]

    Google Scholar

    [11] 王晓燕,郑建中,翟建平. SEAR技术修复土壤和地下水中NAPL污染的研究进展[J]. 环境污染治理技术与设备,2006(10):1-5.[WANG X Y, ZHENG J Z, ZHAI J P. Advances in surfactant enhanced aquifer remediation of NAPL-contaminated soil and groundwater systems[J].Techniques and Equipment for Environmental Pollution Control,2006(10):1-5.(in Chinese)]

    Google Scholar

    [12] 王磊,龙涛,祝欣,等. 用于土壤及地下水修复的多相抽提技术原理及其有效性评估方法[C]//2013中国环境科学学会学术年会论文集(第五卷).北京:中国环境科学学会,2013:7.[WANG L, LONG T, ZHU X, et al. Principles and effectiveness evaluation method of multiphase extraction technology for soil and groundwater remediation[C]//Proceedings of the 2013 Chinese Academy of Environmental Sciences Annual Conference (Volume 5). Beijing:Chinese Society for Environmental Sciences,2013:7.(in Chinese)]

    Google Scholar

    [13] 张晶,张峰,马烈.多相抽提和原位化学氧化联合修复技术应用——某有机复合污染场地地下水修复工程案例[J].环境保护科学,2016,42(3):154-158.[ZHANG J, ZHANG F, MA L. Combined application of multiple remediation technologies by multi-phase extraction and in-situ chemical oxidation-A case study of one groundwater remediation engineering project at an organic compound contaminated site[J].Environmental Protection Science,2016,42(3):154-158.(in Chinese)]

    Google Scholar

    [14] 白静.表面活性剂强化地下水循环井技术修复NAPL污染含水层研究[D].长春:吉林大学,2013.[BAI J. Remediation of NAPL contaminated aquifer with surfactant -enhanced groundwater circulation well[D]. Changchun:Jilin University,2013.(in Chinese)]

    Google Scholar

    [15] LEIF NELSON, JAMES BARKER, TOM LI, et al. A field trial to assess the performance of CO2-supersaturated water injection for residual volatile LNAPL recovery[J].Journal of Contaminant Hydrology,2009, 109(1/2/3/4):82-90

    Google Scholar

    [16] JAEHAKJEONG, RANDALL J, CHARBENEAU. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils[J].Journal of Contaminant Hydrology, 2014, 156(1):52-61

    Google Scholar

    [17] FATEMEH EBRAHIMI, ROBERT JAMES LENHARD, MOHAMMAD NAKHAEI, et al. An approach to optimize the location of LNAPL recovery wells using the concept of a LNAPL specific yield[J]. Environmental Science and Pollution Research,2019,26(28):28714-28724.

    Google Scholar

    [18] W WANG, T KUO, Y CHEN, et al. Effect of precipitation on LNAPL recovery performance:An integration of laboratory and field results[J]. Journal of Petroleum Science and Engineering,2014,116:1-7

    Google Scholar

    [19] 施小清,张可霓,吴吉春. TOUGH2软件的发展及应用[J]. 工程勘察,2009, 37(10):29-34.[SHI X Q, ZHANG K N, WU J C. The history and application of TOUGH2 code[J]. Geotechnical Investigation & Surveying,2009,37(10):29-34.(in Chinese)]

    Google Scholar

    [20] 赵科锋,王锦国.包气带中裂隙对轻非水相流体运移和分布影响的模拟研究[J].水利学报,2016,47(7):891-899.[ZHAO K F, WANG J G. Simulation of fracture impacts on LNAPL migration and distribution in the unsaturated zone[J]. Journal of Hydraulic Engineering,2016,47(7):891-899.(in Chinese)]

    Google Scholar

    [21] 黄倩,王锦国,陈舟,等. 黏滞性对LNAPL在非饱和多孔介质中优先流影响的试验研究[J]. 河海大学学报(自然科学版),2015, 43(1):66-71.[HUANG Q, WANG J G, CHEN Z, et al. Experimental study of impacts of viscosity of LNAPL on preferential flow in unsaturated porous media[J]. Journal of Hohai University (Natural Sciences), 2015, 43(1):66-71.(in Chinese)]

    Google Scholar

    [22] 赵科锋,王锦国,黄倩,等. 包气带中轻非水相流体运移速率的研究[J]. 工程勘察,2016, 44(3):34-41.[ZHAO K F, WANG J G, HUANG Q, et al. Study on migration rate of LNAPL in vadose zone[J]. Geotechnical Investigation & Surveying,2016, 44(3):34-41.(in Chinese)]

    Google Scholar

    [23] 卢斌,邵军荣,张源,等.裂隙地下水中残留LNAPL物理驱替冲洗实验[J].中国环境科学,2020,40(1):182-189.[LU B, SHAO J R, ZHANG Y, et al. Physical displacement and flush of entrapped LNAPL in fractured media groundwater[J]. China Environmental Science,2020,40(1):182-189.(in Chinese)]

    Google Scholar

    [24] 卢斌, 吴时强, 谈叶飞, 等.单裂隙中LNAPL残留特点及残留体对水流动动的影响[J].水科学进展, 2015(1):107-113.[LU B, WU S Q, TAN Y F, et al. Characterization of residual LNAPL and effect of LNAPL entrapment configuration on water flow in a single fracture[J].Advances in Water Science, 2015(1):107-113.(in Chinese)]

    Google Scholar

    [25] EBRAHIMI F, LENHARD R J, NAKHAEI M, et al. An approach to optimize the location of LNAPL recovery wells using the concept of a LNAPL specific yield[J]. Environmental Science and Pollution Research International,2019,26(28):28714-28724.

    Google Scholar

    [26] ATTEIA O, PALMIER C, SCHÄFER G. On the influence of groundwater table fluctuations on oil thickness in a well related to an LNAPL contaminated aquifer[J]. Journal of Contaminant Hydrology,2019,223:103476.

    Google Scholar

    [27] ATTEIA O, PALMIER C, SCH FER G. On the influence of groundwater table fluctuations on oil thickness in a well related to an LNAPL contaminated aquifer[J]. Journal of Contaminant Hydrology,2019,223:103476.

    Google Scholar

    [28] SOOKHAK LARI K, DAVIS G B, RAYNER J L, et al. Natural source zone depletion of LNAPL:A critical review supporting modelling approaches[J]. Water Research,2019,157:630-646.

    Google Scholar

    [29] QI S Q, LUO J, O'CONNOR D, et al. A numerical model to optimize LNAPL remediation by multi-phase extraction[J]. Science of the Total Environment,2020,718:137309.

    Google Scholar

    [30] LONGPRé-GIRARD M, MARTEL R, ROBERT T, et al. Surfactant foam selection for enhanced light non-aqueous phase liquids (LNAPL) recovery in contaminated aquifers[J]. Transport in Porous Media,2020,131(1):65-84.

    Google Scholar

    [31] GARCíA-RINCóN JONáS,GATSIOS EVANGELOS,RAYNER JOHN L,et al. Laser-induced fluorescence logging as a high-resolution characterisation tool to assess LNAPL mobility[J]. The Science of the Total Environment,2020,725:138-480.

    Google Scholar

    [32] MOTASEM Y D ALAZAIZA,MOHAD HARRIS RAMLI,NADIM K COPTY,et al. LNAPL saturation distribution under the influence of water table fluctuations using simplified image analysis method[J]. Bulletin of Engineering Geology and the Environment:The official journal of the IAEG,2020,79(8):1543-1554.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(872) PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint