[1]
|
LIAKOPOULOS A C. Retention and distribution of moisture in soils after infiltration has ceased[J]. International Association of Scientific Hydrology Bulletin, 1965, 10(2):58-69.
Google Scholar
|
[2]
|
吴梦喜, 高莲士. 饱和-非饱和土体非稳定渗流数值分析[J]. 水利学报, 1999, 30(12):38-42.[WU M X, GAO L S. Saturated-unsaturated unsteady seepage numerical analysis[J]. Journal of Hydraulic Engineering, 1999, 30(12):38-42.(in Chinese)]
Google Scholar
|
[3]
|
李信,高骥,汪自力,等. 饱和-非饱和土的渗流三维计算[J]. 水利学报, 1992, 23(11):63-68.[LI X, GAO J, WANG Z L, et al. Three-dimensional seepage simulation in saturated-unsaturated soil[J]. Journal of Hydraulic Engineering, 1992, 23(11):63-68.(in Chinese)]
Google Scholar
|
[4]
|
ZHA Y Y, YANG J Z, ZENG J C, et al. Review of numerical solution of Richardson-Richards equation for variably saturated flow in soils[J/OL]. Wiley Interdisciplinary Reviews:Water, 2019, 6(5):e1364. DOI:10.1002/wat2.1364.
Google Scholar
|
[5]
|
NGO-CONG D, MAI-DUY N, ANTILLE D L, et al. A control volume scheme using compact integrated radial basis function stencils for solving the Richards equation[J]. Journal of Hydrology, 2020, 580:124240.
Google Scholar
|
[6]
|
HUYAKORN P S, THOMAS S D, THOMPSON B M. Techniques for making finite elements competitve in modeling flow in variably saturated porous media[J].Water Resources Research, 1984, 20(8):1099-1115.
Google Scholar
|
[7]
|
ZHA Y Y, YANG J Z, YIN L H, et al. A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil[J]. Journal of Hydrology, 2017, 551:56-69.
Google Scholar
|
[8]
|
ZENG J C, ZHA Y Y, YANG J Z. Switching the Richards' equation for modeling soil water movement under unfavorable conditions[J]. Journal of Hydrology, 2018, 563:942-949.
Google Scholar
|
[9]
|
CELIA M A, BOULOUTAS E T, ZARBA R. A general mass-conservative numerical solution for the unsaturated flow equation[J].Water Resources Research, 1990, 26(7):1483-1496.
Google Scholar
|
[10]
|
KIRKLAND M R, HILLS R G, WIERENGA P J. Algorithms for solving Richards' equation for variably saturated soils[J]. Water Resources Research, 1992, 28(8):2049-2058.
Google Scholar
|
[11]
|
DOGAN A, MOTZ L H. Saturated-unsaturated 3D groundwater model. I:development[J]. Journal of Hydrologic Engineering, 2005, 10(6):492-504.
Google Scholar
|
[12]
|
李光炽,王船海. 大型河网水流模拟的矩阵标识法[J]. 河海大学学报(自然科学版), 1995, 23(1):36-43.[LI G Z, WANG C H. Matrix mark method for large-scale river network flow modeling[J]. Journal of Hohai University (Natural Sciences), 1995,23(1):36-43.(in Chinese)]
Google Scholar
|
[13]
|
李光炽, 王船海, 周晶晏. 二维流场模拟的矩阵标识法[J]. 河海大学学报(自然科学版), 2002, 30(3):80-84.[LI G Z, WANG C H, ZHOU J Y. Matrix mark method for modelling 2D flow pattern[J]. Journal of Hohai University(Natural Sciences), 2002,30(3):80-84.(in Chinese)]
Google Scholar
|
[14]
|
施小清, 张可霓, 吴吉春. TOUGH2软件的发展及应用[J]. 工程勘察, 2009, 37(10):29-34.[SHI X Q, ZHANG K N, WU J C. The history and application of TOUGH2 code[J]. Geotechnical Investigation & Surveying, 2009,37(10):29-34.(in Chinese)]
Google Scholar
|
[15]
|
陈景波, 王船海, 杜世鹏, 等. 平原区饱和-非饱和土壤水运动模型及数值算法研究[J]. 水力发电, 2016, 42(9):13-16.[CHEN J B, WANG C H, DU S P, et al. Study on flow model and numerical simulation of unsaturated and saturated soil water in plain area[J]. Water Power, 2016,42(9):13-16.(in Chinese)]
Google Scholar
|
[16]
|
COOLEY R L. Some new procedures for numerical solution of variably saturated flow problems[J]. Water Resources Research, 1983, 19(5):1271-1285.
Google Scholar
|
[17]
|
van GENUCHTEN M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5):892-898.
Google Scholar
|
[18]
|
DIERSCH H J G.. FEFLOW:Finite element modeling of flow, mass and heat transport in porous and fractured media[M]. Berlin:Springer Press, 2014.
Google Scholar
|
[19]
|
HUYAKORN P S, SPRINGER E P, GUVANASEN V, et al. A three-dimensional finite-element model for simulating water flow in variably saturated porous media[J]. Water Resources Research, 1986, 22(13):1790-1808.
Google Scholar
|
[20]
|
DAVIS L A, NEUMAN S P. Documentation and user's guide:UNSAT2-Variably saturated flow model[R]. Fort Collins, Colorado:Water, Waste & Land, Incorporation, 1983.
Google Scholar
|
[21]
|
VAUCLIN M, KHANJI D, VACHAUD G. Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem[J]. Water Resources Research, 1979, 15(5):1089-1101.
Google Scholar
|
[22]
|
ZHA Y Y, SHI L S, YE M, et al. A generalized Ross method for two-and three-dimensional variably saturated flow[J]. Advances in Water Resources, 2013, 54:67-77.
Google Scholar
|
[23]
|
CLEMENT T P, WISE W R, MOLZ F J. A physically based, two-dimensional, finite-difference algorithm for modeling variably saturated flow[J]. Journal of Hydrology, 1994, 161(1):71-90.
Google Scholar
|
[24]
|
SIMUNEK J, VAN GENUCHTEN M T, SEJNA M. The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably saturated media[R]. Prague, Czech Republic:PC Progress, 2006.
Google Scholar
|
[25]
|
THOMS R B, JOHNSON R L, HEALY R W. User's guide to the variably saturated flow (VSF) process for MODFLOW[R]. Reston, Virginia:US Geological Survey, 2006.
Google Scholar
|
[26]
|
DOGAN A. Variably saturated three-dimensional rainfall-driven groundwater flow model[D]. Gainesville, Florida:University of Florida, 1999.
Google Scholar
|
[27]
|
VAUCLIN M, VACHAUD G, KHANJI J. Two dimensional numerical analysis of transient water transfer in saturated-unsaturated soils[C]//VANSTEENKISTE G C. Modeling and simulation of water resources systems. Amsterdam:North-Holland Publishing Company, 1975:299-323.
Google Scholar
|
[28]
|
HAVERKAMP R, VAUCLIN M, TOUMA J, et al. A comparison of numerical simulation models for one-dimensional infiltration1[J]. Soil Science Society of America Journal, 1977, 41(2):285-294.
Google Scholar
|
[29]
|
吴礼舟,黄润秋.非饱和土渗流及其参数影响的数值分析[J].水文地质工程地质,2011,38(1):94-98.[WU L Z, HUANG R Q. A numerical analysis of the infiltration and parameter effects in unsaturated soil[J].Hydrogeology & Engineering Geology,2011,38(1):94-98. (in Chinese)]
Google Scholar
|
[30]
|
陈卫金,程东会,陶伟.van Genuchten模型参数的物理意义[J].水文地质工程地质,2017,44(6):147-153.[CHEN W J, CHENG D H, TAO W. Physical significance of the parameters in the van Genuchten model[J].Hydrogeology & Engineering Geology,2017,44(6):147-153. (in Chinese)]
Google Scholar
|
[31]
|
范严伟, 赵文举, 毕贵权. Van Genuchten模型参数变化对土壤入渗特性的影响分析[J]. 中国农村水利水电, 2016(3):52-56.[FAN Y W, ZHAO W J, BI G Q. The influence analysis of parameters variations in van Genuchten model on the soil infiltration characteristics[J]. China Rural Water and Hydropower, 2016(3):52-56.(in Chinese)]
Google Scholar
|
[32]
|
高志鹏, 屈吉鸿, 陈南祥, 等. 一维水流及溶质运移对VG模型参数的敏感性分析[J]. 节水灌溉, 2017(11):65-71.[GAO Z P, QU J H, CHEN N X, et al. Sensitivity analysis of VG model parmneters to one dimensional water flows and solute transport[J]. Water Saving Irrigation, 2017(11):65-71.(in Chinese)]
Google Scholar
|
[33]
|
霍思远, 靳孟贵. Van Genuchten模型参数对降水入渗数值模拟的敏感性[J]. 地球科学, 2017, 42(3):447-452.[HUO S Y, JIN M G. Effect of parameter sensitivity of van Genuchten model on numerical simulation of rainfall recharge[J]. Earth Science, 2017, 42(3):447-452.(in Chinese)]
Google Scholar
|
[34]
|
张海阔, 姜翠玲, 李亮, 等. 基于HYDRUS-1D模拟的变水头入渗条件下VG模型参数敏感性分析[J]. 河海大学学报(自然科学版), 2019, 47(1):32-40.[ZHANG H K, JIANG C L, LI L, et al. Parameter sensitivity analysis of VG model in the varying-head infiltration based on HYDRUS-1D simulation[J]. Journal of Hohai University(Natural Sciences), 2019, 47(1):32-40.(in Chinese)]
Google Scholar
|
[35]
|
李昊旭,邵景力,崔亚莉,等.不同作物覆盖对农业区地下水入渗补给的影响分析[J].水文地质工程地质,2019,46(2):57-65.[LI H X, SHAO J L, CUI Y L, et al. Effects of different crop covers on vertical groundwater recharge[J].Hydrogeology & Engineering Geology,2019,46(2):57-65. (in Chinese)]
Google Scholar
|
[36]
|
霍思远,靳孟贵.不同降水及灌溉条件下的地下水入渗补给规律[J].水文地质工程地质,2015,42(5):6-13.[HUO S Y, JIN M G. Effects of precipitation and irrigation on vertical groundwater recharge[J].Hydrogeology & Engineering Geology,2015,42(5):6-13. (in Chinese)]
Google Scholar
|