2020 Vol. 47, No. 5
Article Contents

BAO Xilin, FEI Yuhong, LI Yasong, CAO Shengwei. 2020. Determination of the key hydrodynamic parameters of the fault zone using colloidal borescope in the Dawu well field and strategies for contamination prevention and control. Hydrogeology & Engineering Geology, 47(5): 56-63. doi: 10.16030/j.cnki.issn.1000-3665.201911066
Citation: BAO Xilin, FEI Yuhong, LI Yasong, CAO Shengwei. 2020. Determination of the key hydrodynamic parameters of the fault zone using colloidal borescope in the Dawu well field and strategies for contamination prevention and control. Hydrogeology & Engineering Geology, 47(5): 56-63. doi: 10.16030/j.cnki.issn.1000-3665.201911066

Determination of the key hydrodynamic parameters of the fault zone using colloidal borescope in the Dawu well field and strategies for contamination prevention and control

More Information
  • The Dawu well field is located in a large petrochemical production base area near the city of Zibo. Groundwater near the fault zone in the well field area was affected by the surface petrochemical pollutants, and it is in urgent need of targeted treatment. However, how to accurately determine the actual flow velocity, runoff velocity and hydraulic conductivity in the karst aquifer under the background of large-scale pumping is the key for effective pollution control. In this paper, based on the newly developed technology of colloidal borescope, seven detection wells are arranged in the selected 21 layers in the polluted section of the fault zone in the well field area and the dominant flow theory and geostatistical method are employed. The results show that (1) the strong runoff layer (easily polluted) of the aquifer near the fault zone in the Dawu karst groundwater well field area is located from the lower part of the Badou Formation (O2-3b) to the upper part of the Gezhuang Formation (O2g), and groundwater within 65 m is the main water source of karst groundwater pollution in the area. (2) Groundwater near the fault zone has multiple particle flows, and the runoff direction and flow velocity in different sections are quite different, which is related to the pumping intensity. (3) In the treatment of groundwater pollution in the Hougao section, optimization and adjustment of groundwater exploitation should be made: the transportation of shallow flow (70 m) should be reduced to greater than the runoff velocity of SW95 (50.30 m/d), and the transportation of 80~110 m should be reduced to less than the runoff velocity of SW99 (49.38 m/d).
  • 加载中
  • [1] 刘建立, 朱学愚, 钱孝星. 中国北方裂隙岩溶水资源开发和保护中若干问题的研究[J]. 地质学报, 2000,74(4):344-352.[LIU J L, ZHU X Y, QIAN X Q. Study of some problems on the development and protection of fracture-karst water resources in north China[J]. Acta Geologica Sinica, 2000,74(4):344-352.(in Chinese)]

    Google Scholar

    [2] 王昭, 石建省, 张兆吉, 等. 华北平原地下水中有机物淋溶迁移性及其污染风险评价[J]. 水利学报, 2009,40(7):830-837.[WANG Z, SHI J S, ZHANG Z J, et al. Leachability and pollution risk assessment of organic contaminants in ground water in the North China Plain[J]. Journal of Hydraulic Engineering,2009,40(7):830-837.(in Chinese)]

    Google Scholar

    [3] 方国华, 钟淋涓, 吴学文, 等. 水资源利用和水污染防治投入产出最优控制模型研究[J]. 水利学报, 2010,41(9):1128-1134.[FANG G H, ZHONG L J, WU X W, et al. Optimal control model for water resources utilization and water pollution control of input-output[J]. Journal of Hydraulic Engineering, 2010,41(9):1128-1134.(in Chinese))

    Google Scholar

    [4] WEN Z, HUANG G H, ZHAN H B. Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation[J]. Hydrogeology Journal, 2011,19(3):563-572.

    Google Scholar

    [5] 韩庆之, 陈辉, 万凯军, 等. 武汉长江底钻孔同位素单井法地下水流速、流向测试[J]. 水文地质工程地质, 2003,30(2):74-76.[HAN Q Z, CHEN H, WAN K J, et al. Determination of the velocity and direction of the groundwater flow using single well method in Changjiang River, Wuhan City[J]. Hydrogeology & Engineering Geology, 2003,30(2):74-76(in Chinese)]

    Google Scholar

    [6] 靳孟贵, 高云福, 王文峰, 等. 用同位素测井技术确定地下水侧向补给量[J]. 水文地质工程地质, 2005,32(4):32-36.[JIN M G, GAO Y F, WANG W F, et al. Determination of lateral groundwater recharge using single well techniques of a radioactive isotope[J]. Hydrogeology & Engineering Geology, 2005,32(4):32-36(in Chinese)]

    Google Scholar

    [7] 张开伟, 赵海超, 杨灵杰. 自然电位法在岩溶地区地下水流向调查中的应用[C]//2016年全国工程勘察学术大会.太原,2016.[ZHANG K W, ZHAO H C, YANG L J. Application of spontaneous potential in investigation of groundwater flow direction in karst area[C]//National Engineering Survey Academic Conference. Taiyuan, 2016. (in Chinese)]

    Google Scholar

    [8] 马安丽. 利用充电法测定地下水的流速流向[J]. 地下水, 2011,33(5):5.[MA A L. Determination of flow velocity of groundwater by charging method[J]. Ground Water,2011,33(5):5.(in Chinese)]

    Google Scholar

    [9] 张道清, 王润潮. 环形自然电场法和充电法在确定地下水流速和流向中的应用[J]. 水文地质工程地质, 1992,19(4):56-57.[ZHANG D Q, WANG R C. Determination of flow direction and velocity of groundwater by charging method and spontaneous potential[J]. Hydrogeology & Engineering Geology, 1992,19(4):56-57(in Chinese))

    Google Scholar

    [10] 吕全标, 胡晓农, 曹建华, 等. 基于钻孔抽水试验和示踪试验的岩溶地区含水层结构研究[J]. 中国岩溶, 2017, 36(5):727-735.[LYU Q B, HU X N, CAO J H, et al. Aquifer structure of karst areas derived from borehole pumping and tracer tests[J]. Carsologica Sinica, 2017,36(5):727-735(in Chinese)]

    Google Scholar

    [11] 赵鹏宇, 翟召怀, 步秀芹, 等. 滹沱河源头地下水硝酸盐污染的氮氧同位素示踪[J]. 水资源与水工程学报, 2017,28(6):83-89.[ZHAO P Y, ZHAI Z H, BU X Q, et al. Traceability of Nitrogen-Oxygen isotope on nitrate-contaminated groundwater of Hutuo River Source[J]. Journal of Water Resources and Water Engineering, 2017,28(6):83-89.(in Chinese)]

    Google Scholar

    [12] 沈欢, 黄勇, 周志芳. 基于示踪试验的多重裂隙网分级与渗透参数确定[J]. 人民长江, 2018,49(14):95-99.[SHEN H, HUANG Y, ZHOU Z F. Classification of multi-layered fracture network and determination of its permeability parameters based on tracer tests[J]. Yangtze River, 2018,49(14):95-99.(in Chinese)]

    Google Scholar

    [13] 张劲松, 杨玫. 人工示踪试验方法在岩溶地下水调查中的应用[J]. 地质论评, 2017,63(增刊1):335-336.[ZHANG J S, YANG M. Applications of tracing test in karst groundwater investigation[J]. Geological Review, 2017,63(Sup1):335-336.(in Chinese)]

    Google Scholar

    [14] KEARL P M, KORTE N E, CRONK T A. Suggested modifications to ground water sampling procedures based on observations from the colloidal borescope[J]. Ground Water Monitoring & Remediation, 2010,12(2):155-161.

    Google Scholar

    [15] KORTE N, KEARL P M, SIEGRIST R L, et al. An evaluation of horizontal recirculation using single-well tests, pumping tests, tracer tests, and the colloidal borescope.[J]. Groundwater Monitoring & Remediation, 2000,20(1):78-85.

    Google Scholar

    [16] 张文静, 周晶晶, 刘丹, 等. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展, 2016,27(4):629-638.[ZHANG W J, ZHOU J J, LIU D, et al. A review:research methods that describe the environmental behavior of colloids in groundwater.[J]. Advances in Water Science, 2016,27(4):629-638(in Chinese)]

    Google Scholar

    [17] BINTI GHAZALI M F, BIN ADLAN M N, BIN SAMUDING K, et al. Direct determination of groundwater direction and velocity using colloidal borescope at Jenderam Hilir, Selangor[J]. Applied Mechanics & Materials, 2015,802:640-645.

    Google Scholar

    [18] PARK D K, BAE G O, JOUN W, et al. An integrated approach on groundwater flow and heat/solute transport for sustainable groundwater source heat pump (GWHP) system operation[M]. Agu Fall Meeting, 2015.

    Google Scholar

    [19] 杨丽芝, 刘迪, 刘本华, 等. 胶体探孔器在观测岩溶水流速流向中的应用[J]. 工程勘察, 2019,47(4):35-39.[YANG L Z, LIU D, LIU B H, et al. Application of colloidal borescope in observing the velocity and direction of karst fissure water[J]. Geotechnical Investigation & Surveying, 2019,47(4):35-39.(in Chinese)]

    Google Scholar

    [20] 张昊, 敖松, 刘俊洋. 北京地铁下穿运河区间地下水流速流向测试[J]. 城市轨道交通研究, 2016,19(7):27-29.[ZHANG H, AO S, LIU J Y. Test of groundwater velocity and flow direction in river-crossing section of Beijing metro[J]. Urban Mass Transit, 2016,19(7):27-29.(in Chinese)]

    Google Scholar

    [21] 尚宇宁. 淄博市大武水源地岩溶水水位多年动态变化分析研究[J]. 山东国土资源, 2013,29(9):44-47.[SHANG Y N. Study on karst water level dynamic change for many years of Dawu water resource area in Zibo City[J]. Shandong Land and Resources, 2013,29(9):44-47.(in Chinese)]

    Google Scholar

    [22] 郭达鹏, 康凤新, 陈奂良, 等. 山东淄博沣水泉域岩溶水系统模拟及水源地优化开采预测[J]. 中国岩溶, 2017,36(3):327-338.[GUO D P, KANG F X, CHEN H L, et al. Numerical simulation and optimal exploitation scheme for the karst groundwater recourses system of Fengshui Spring basin in Zibo Region,Shandong Province, China[J]. Carsologica Sinica, 2017,36(3):327-338.(in Chinese))

    Google Scholar

    [23] 吴庆, 郭永丽, 翟远征, 等. 大武水源地地下水中NO-3-N动态变化特征及其影响因素分析[J]. 水文, 2017,(6):68-73.[WU Q, GUO Y L, ZHAI Y Z, et al. Dynamic variation characteristics of NO-3 N in groundwater of Dawu water source and influencing factors[J]. Journal of China Hydrology, 2017,(6):68-73.(in Chinese)]

    Google Scholar

    [24] 朱学愚,刘建立. 山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究[J]. 地学前缘, 2001,8(1):171-177.[ZHU X Y, LIU J L. Numerical study of contaminants transport in fracture-karst water in Dawu well field,Zibo City, Shandong Province[J]. Earth Science Frontiers, 2001,8(1):171-177.(in Chinese)]

    Google Scholar

    [25] 任增平, 李广贺, 张戈. 大武水源地堠皋地区水力截获工程运行的数值模拟[J]. 地下水, 2002,24(1):14-15.[REN Z P, LI G H, ZHANG G. Numeric simulation of waterpower intercept and capture engineering running in Hougao area in Dawu water resources area[J]. Ground Water, 2002,24(1):14-15.(in Chinese))

    Google Scholar

    [26] KEARL P M, KORTE N E, CRONK T A. Suggested modifications to ground water sampling procedures based on observations from the colloidal borescope[J]. Groundwater Monitoring& Remediation, 1992,12(2):155-161.

    Google Scholar

    [27] 郭绪磊, 朱静静, 陈乾龙, 等. 新型地下水流速流向测量技术及其在岩溶区调查中的应用[J]. 地质科技情报, 2019,38(1):243-249.[GUO X L, ZHU J J, CHEN Q L, et al. Flow direction and its application in the investigation of karst area[J]. Geological Science and Technology Information, 2019,38(1):243-249.(in Chinese)]

    Google Scholar

    [28] 刘洪. 优势渗流通道的试井解释方法研究[J]. 石油地质与工程, 2015,29(2):98-100.[LIU H. Well testing interpretation method research of preferential seepage channels[J]. Petroleum Geology and Engineering, 2015,29(2):98-100(in Chinese)]

    Google Scholar

    [29] 汪庐山, 关悦, 刘承杰, 等. 利用油藏工程原理描述优势渗流通道的新方法[J]. 科学技术与工程, 2013,13(5):1155-1159.[WANG L S, GUAN Y, LIU C J, et al. A method of describing preferential flowing path by reservoir engineering principles[J]. Science Technology and Engineering, 2013,13(5):1155-1159(in Chinese)]

    Google Scholar

    [30] 主恒祥, 邢立亭, 相华, 等. 示踪试验在济南泉群优势补给径流通道研究中的应用[J]. 地下水, 2017,39(2):5-7.[ZHU H X, XING L T, XIANG H, et al. Application of tracer test in the study of preferential runoff path of Ji'nan spring group[J]. Ground Water, 2017,39(2):5-7.(in Chinese)]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1017) PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint