[1]
|
刘建立, 朱学愚, 钱孝星. 中国北方裂隙岩溶水资源开发和保护中若干问题的研究[J]. 地质学报, 2000,74(4):344-352.[LIU J L, ZHU X Y, QIAN X Q. Study of some problems on the development and protection of fracture-karst water resources in north China[J]. Acta Geologica Sinica, 2000,74(4):344-352.(in Chinese)]
Google Scholar
|
[2]
|
王昭, 石建省, 张兆吉, 等. 华北平原地下水中有机物淋溶迁移性及其污染风险评价[J]. 水利学报, 2009,40(7):830-837.[WANG Z, SHI J S, ZHANG Z J, et al. Leachability and pollution risk assessment of organic contaminants in ground water in the North China Plain[J]. Journal of Hydraulic Engineering,2009,40(7):830-837.(in Chinese)]
Google Scholar
|
[3]
|
方国华, 钟淋涓, 吴学文, 等. 水资源利用和水污染防治投入产出最优控制模型研究[J]. 水利学报, 2010,41(9):1128-1134.[FANG G H, ZHONG L J, WU X W, et al. Optimal control model for water resources utilization and water pollution control of input-output[J]. Journal of Hydraulic Engineering, 2010,41(9):1128-1134.(in Chinese))
Google Scholar
|
[4]
|
WEN Z, HUANG G H, ZHAN H B. Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation[J]. Hydrogeology Journal, 2011,19(3):563-572.
Google Scholar
|
[5]
|
韩庆之, 陈辉, 万凯军, 等. 武汉长江底钻孔同位素单井法地下水流速、流向测试[J]. 水文地质工程地质, 2003,30(2):74-76.[HAN Q Z, CHEN H, WAN K J, et al. Determination of the velocity and direction of the groundwater flow using single well method in Changjiang River, Wuhan City[J]. Hydrogeology & Engineering Geology, 2003,30(2):74-76(in Chinese)]
Google Scholar
|
[6]
|
靳孟贵, 高云福, 王文峰, 等. 用同位素测井技术确定地下水侧向补给量[J]. 水文地质工程地质, 2005,32(4):32-36.[JIN M G, GAO Y F, WANG W F, et al. Determination of lateral groundwater recharge using single well techniques of a radioactive isotope[J]. Hydrogeology & Engineering Geology, 2005,32(4):32-36(in Chinese)]
Google Scholar
|
[7]
|
张开伟, 赵海超, 杨灵杰. 自然电位法在岩溶地区地下水流向调查中的应用[C]//2016年全国工程勘察学术大会.太原,2016.[ZHANG K W, ZHAO H C, YANG L J. Application of spontaneous potential in investigation of groundwater flow direction in karst area[C]//National Engineering Survey Academic Conference. Taiyuan, 2016. (in Chinese)]
Google Scholar
|
[8]
|
马安丽. 利用充电法测定地下水的流速流向[J]. 地下水, 2011,33(5):5.[MA A L. Determination of flow velocity of groundwater by charging method[J]. Ground Water,2011,33(5):5.(in Chinese)]
Google Scholar
|
[9]
|
张道清, 王润潮. 环形自然电场法和充电法在确定地下水流速和流向中的应用[J]. 水文地质工程地质, 1992,19(4):56-57.[ZHANG D Q, WANG R C. Determination of flow direction and velocity of groundwater by charging method and spontaneous potential[J]. Hydrogeology & Engineering Geology, 1992,19(4):56-57(in Chinese))
Google Scholar
|
[10]
|
吕全标, 胡晓农, 曹建华, 等. 基于钻孔抽水试验和示踪试验的岩溶地区含水层结构研究[J]. 中国岩溶, 2017, 36(5):727-735.[LYU Q B, HU X N, CAO J H, et al. Aquifer structure of karst areas derived from borehole pumping and tracer tests[J]. Carsologica Sinica, 2017,36(5):727-735(in Chinese)]
Google Scholar
|
[11]
|
赵鹏宇, 翟召怀, 步秀芹, 等. 滹沱河源头地下水硝酸盐污染的氮氧同位素示踪[J]. 水资源与水工程学报, 2017,28(6):83-89.[ZHAO P Y, ZHAI Z H, BU X Q, et al. Traceability of Nitrogen-Oxygen isotope on nitrate-contaminated groundwater of Hutuo River Source[J]. Journal of Water Resources and Water Engineering, 2017,28(6):83-89.(in Chinese)]
Google Scholar
|
[12]
|
沈欢, 黄勇, 周志芳. 基于示踪试验的多重裂隙网分级与渗透参数确定[J]. 人民长江, 2018,49(14):95-99.[SHEN H, HUANG Y, ZHOU Z F. Classification of multi-layered fracture network and determination of its permeability parameters based on tracer tests[J]. Yangtze River, 2018,49(14):95-99.(in Chinese)]
Google Scholar
|
[13]
|
张劲松, 杨玫. 人工示踪试验方法在岩溶地下水调查中的应用[J]. 地质论评, 2017,63(增刊1):335-336.[ZHANG J S, YANG M. Applications of tracing test in karst groundwater investigation[J]. Geological Review, 2017,63(Sup1):335-336.(in Chinese)]
Google Scholar
|
[14]
|
KEARL P M, KORTE N E, CRONK T A. Suggested modifications to ground water sampling procedures based on observations from the colloidal borescope[J]. Ground Water Monitoring & Remediation, 2010,12(2):155-161.
Google Scholar
|
[15]
|
KORTE N, KEARL P M, SIEGRIST R L, et al. An evaluation of horizontal recirculation using single-well tests, pumping tests, tracer tests, and the colloidal borescope.[J]. Groundwater Monitoring & Remediation, 2000,20(1):78-85.
Google Scholar
|
[16]
|
张文静, 周晶晶, 刘丹, 等. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展, 2016,27(4):629-638.[ZHANG W J, ZHOU J J, LIU D, et al. A review:research methods that describe the environmental behavior of colloids in groundwater.[J]. Advances in Water Science, 2016,27(4):629-638(in Chinese)]
Google Scholar
|
[17]
|
BINTI GHAZALI M F, BIN ADLAN M N, BIN SAMUDING K, et al. Direct determination of groundwater direction and velocity using colloidal borescope at Jenderam Hilir, Selangor[J]. Applied Mechanics & Materials, 2015,802:640-645.
Google Scholar
|
[18]
|
PARK D K, BAE G O, JOUN W, et al. An integrated approach on groundwater flow and heat/solute transport for sustainable groundwater source heat pump (GWHP) system operation[M]. Agu Fall Meeting, 2015.
Google Scholar
|
[19]
|
杨丽芝, 刘迪, 刘本华, 等. 胶体探孔器在观测岩溶水流速流向中的应用[J]. 工程勘察, 2019,47(4):35-39.[YANG L Z, LIU D, LIU B H, et al. Application of colloidal borescope in observing the velocity and direction of karst fissure water[J]. Geotechnical Investigation & Surveying, 2019,47(4):35-39.(in Chinese)]
Google Scholar
|
[20]
|
张昊, 敖松, 刘俊洋. 北京地铁下穿运河区间地下水流速流向测试[J]. 城市轨道交通研究, 2016,19(7):27-29.[ZHANG H, AO S, LIU J Y. Test of groundwater velocity and flow direction in river-crossing section of Beijing metro[J]. Urban Mass Transit, 2016,19(7):27-29.(in Chinese)]
Google Scholar
|
[21]
|
尚宇宁. 淄博市大武水源地岩溶水水位多年动态变化分析研究[J]. 山东国土资源, 2013,29(9):44-47.[SHANG Y N. Study on karst water level dynamic change for many years of Dawu water resource area in Zibo City[J]. Shandong Land and Resources, 2013,29(9):44-47.(in Chinese)]
Google Scholar
|
[22]
|
郭达鹏, 康凤新, 陈奂良, 等. 山东淄博沣水泉域岩溶水系统模拟及水源地优化开采预测[J]. 中国岩溶, 2017,36(3):327-338.[GUO D P, KANG F X, CHEN H L, et al. Numerical simulation and optimal exploitation scheme for the karst groundwater recourses system of Fengshui Spring basin in Zibo Region,Shandong Province, China[J]. Carsologica Sinica, 2017,36(3):327-338.(in Chinese))
Google Scholar
|
[23]
|
吴庆, 郭永丽, 翟远征, 等. 大武水源地地下水中NO-3-N动态变化特征及其影响因素分析[J]. 水文, 2017,(6):68-73.[WU Q, GUO Y L, ZHAI Y Z, et al. Dynamic variation characteristics of NO-3 N in groundwater of Dawu water source and influencing factors[J]. Journal of China Hydrology, 2017,(6):68-73.(in Chinese)]
Google Scholar
|
[24]
|
朱学愚,刘建立. 山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究[J]. 地学前缘, 2001,8(1):171-177.[ZHU X Y, LIU J L. Numerical study of contaminants transport in fracture-karst water in Dawu well field,Zibo City, Shandong Province[J]. Earth Science Frontiers, 2001,8(1):171-177.(in Chinese)]
Google Scholar
|
[25]
|
任增平, 李广贺, 张戈. 大武水源地堠皋地区水力截获工程运行的数值模拟[J]. 地下水, 2002,24(1):14-15.[REN Z P, LI G H, ZHANG G. Numeric simulation of waterpower intercept and capture engineering running in Hougao area in Dawu water resources area[J]. Ground Water, 2002,24(1):14-15.(in Chinese))
Google Scholar
|
[26]
|
KEARL P M, KORTE N E, CRONK T A. Suggested modifications to ground water sampling procedures based on observations from the colloidal borescope[J]. Groundwater Monitoring& Remediation, 1992,12(2):155-161.
Google Scholar
|
[27]
|
郭绪磊, 朱静静, 陈乾龙, 等. 新型地下水流速流向测量技术及其在岩溶区调查中的应用[J]. 地质科技情报, 2019,38(1):243-249.[GUO X L, ZHU J J, CHEN Q L, et al. Flow direction and its application in the investigation of karst area[J]. Geological Science and Technology Information, 2019,38(1):243-249.(in Chinese)]
Google Scholar
|
[28]
|
刘洪. 优势渗流通道的试井解释方法研究[J]. 石油地质与工程, 2015,29(2):98-100.[LIU H. Well testing interpretation method research of preferential seepage channels[J]. Petroleum Geology and Engineering, 2015,29(2):98-100(in Chinese)]
Google Scholar
|
[29]
|
汪庐山, 关悦, 刘承杰, 等. 利用油藏工程原理描述优势渗流通道的新方法[J]. 科学技术与工程, 2013,13(5):1155-1159.[WANG L S, GUAN Y, LIU C J, et al. A method of describing preferential flowing path by reservoir engineering principles[J]. Science Technology and Engineering, 2013,13(5):1155-1159(in Chinese)]
Google Scholar
|
[30]
|
主恒祥, 邢立亭, 相华, 等. 示踪试验在济南泉群优势补给径流通道研究中的应用[J]. 地下水, 2017,39(2):5-7.[ZHU H X, XING L T, XIANG H, et al. Application of tracer test in the study of preferential runoff path of Ji'nan spring group[J]. Ground Water, 2017,39(2):5-7.(in Chinese)]
Google Scholar
|