2020 Vol. 47, No. 5
Article Contents

LUO Yizhen, CHENG Guowen, YIN Lijun, DENG Huangshi, TAN Ning, LIU Zhenzhen. 2020. Prediction and prevention of sudden water gushing in the Hongtuzhang tunnel. Hydrogeology & Engineering Geology, 47(5): 64-72. doi: 10.16030/j.cnki.issn.1000-3665.202003021
Citation: LUO Yizhen, CHENG Guowen, YIN Lijun, DENG Huangshi, TAN Ning, LIU Zhenzhen. 2020. Prediction and prevention of sudden water gushing in the Hongtuzhang tunnel. Hydrogeology & Engineering Geology, 47(5): 64-72. doi: 10.16030/j.cnki.issn.1000-3665.202003021

Prediction and prevention of sudden water gushing in the Hongtuzhang tunnel

More Information
  • Prediction of hydrogeological conditions in front of the palm face in the construction of deep-buried tunnels under complex geological conditions is extremely critical to ensuring the construction safety. Previous works in the study site revealed that the traditional investigation methods cannot describe the geological and hydrogeological characteristics very well and have big deviation from the realities, causing unpredicted tunnel water inrush during the construction. To better predict the geological and hydrogeologic situation in the deep-buried tunnel and determine the possible flood water inrush area, we applied the controllable source audio magnetotelluric method in the Hongtuzhang tunnel construction in Gongdong province. The results show that this new method can better determine the true geological and hydrogeologic condition in the deep-buried tunnel, and match the actual excavation results. Especially this method predicted a potential gushing water inrush point, which was proved to have a maximum gushing water amount of 2 300 m3/h. Based on this detailed founding, we used the advance curtain grouting method to effectively seal the corresponding fault, which limits the water outflow and makes the excavation process in safe. Application of this method is a good test example for the prediction of tunnel water gushing, and can provide a better technology backup for the prevention of related geologic hazard.
  • 加载中
  • [1] 刘高, 杨重存, 谌文武, 等. 深埋长大隧道涌(突)水条件及影响因素分析[J]. 天津城市建设学院学报, 2002, 8(3):160-164.[LIU G, YANG C C, CHEN W W, et al. Conditions and influencing factors of occurrence of groundwater inflow and invasion into deep-buried tunnel[J]. Journal of Tianjin Institute of Urban Construction, 2002, 8(3):160-164.(in Chinese)]

    Google Scholar

    [2] 王勐, 许兆义, 王连俊, 等. 圆梁山毛坝向斜段隧道涌突水灾害及对地下水的影响[J]. 中国安全科学学报, 2004, 14(5):6-10.[WANG M, XU Z Y, WANG L J, et al. Gushing water from Yuanliangshan tunnel in maoba syncline and its impact on surface water[J]. China Safety Science Journal, 2004, 14(5):6-10.(in Chinese)]

    Google Scholar

    [3] 冯太林, 张学工, 李衍达, 等. 折射波地震记录叠加成像方法研究[J].地球物理学报, 2001, 44(1):129-134.[FENG T L, ZHANG X G, LI Y D, et al. Research on methodology of stack imaging of refractive seismic recording[J]. Chinese Journal of Geophysics, 2001, 44(1):129-134.(in Chinese)]

    Google Scholar

    [4] 熊昌盛, 顾汉明, 陈毅敏, 等. 提高浅层地震折射波法在隧道勘察效果的举措[J]. 工程地球物理学报, 2004, 1(5):452-456.[XIONG C S, GU H M, CHEN Y M, et al. The measurement of improving the effect of the shallow refraction seismic exploration in tunnel[J]. Chinese Journal of Engineering Geophysics, 2004, 1(5):452-456.(in Chinese)]

    Google Scholar

    [5] 曾国, 崔德海, 刘杰, 等. 地震折射波法和高密度电法在隧道勘察中的应用[J]. 物探与化探, 2009, 33(5):608-612.[ZENG G, CUI D H, LIU J, et al. The application of seismic refraction wave method and high-density resistivity method to tunnel investigation[J]. Geophysical and Geochemical Exploration, 2009, 33(5):608-612.(in Chinese)]

    Google Scholar

    [6] 王齐仁, 杨天春. 隧道地质灾害超前预报的地震反射法[J]. 地球物理学进展, 2006, 21(2):643-649.[WANG Q R, YANG T C. The seismic reflection method predicting tunnel geological hazards[J]. Progress in Geophysics, 2006, 21(2):643-649.(in Chinese)]

    Google Scholar

    [7] 李越兴, 曹哲明. 地震反射波法在宜万铁路岩溶探查中的应用[J]. 工程地球物理学报, 2007, 4(2):105-108.[LI Y X, CAO Z M. The application of the exploration of karst yiwan railway using seismic reflection method[J]. Chinese Journal of Engineering Geophysics, 2007, 4(2):105-108.(in Chinese)]

    Google Scholar

    [8] 黄绍逵, 欧阳玉飞. 高密度电法在岩溶勘察中的应用[J]. 工程地球物理学报, 2009, 6(6):720-723.[HUANG S K, OUYANG Y F. Application of high density electrical method to karst exploration[J]. Chinese Journal of Engineering Geophysics, 2009, 6(6):720-723.(in Chinese)]

    Google Scholar

    [9] 袁永才,高成路,王旌,等.岩溶隧道突涌水致灾构造与前兆信息判识技术探讨[J].现代隧道技术,2018,55(1):36-44.[YUAN Y C, GAO C L, WANG J, et al. Identification of geological structures and precursory information likely to cause water inflow in karst tunnels[J].Modern Tunnelling Technology, 2018,55(1):36-44.(in Chinese)]

    Google Scholar

    [10] 王应吉, 赵越, 林君, 等. 核磁共振坑道水探测中的激发场研究[J].地球物理学进展, 2013, 28(1):468-473.[WANG Y J, ZHAO Y, LIN J, et al. Coilexcited field in detection of tunnel water by MRS[J]. Progress in Geophysics, 2013, 28(1):468-473.(in Chinese)]

    Google Scholar

    [11] 李勇桥.高密度电法在矿井断层构造富水性探测中的应用[J].山东煤炭科技, 2013(3):226.[LI Y Q.The application of high-density electric method to mine faultage of riching water[J]. Shandong Coal Science and Technology, 2013(3):226.(in Chinese)]

    Google Scholar

    [12] 薛国强,李貅.瞬变电磁隧道超前预报成像技术[J]. 地球物理学报, 2008,51(3):894-900.[XUE G Q, LI X. The technology of TEM tunnel prediction imaging[J]. Chinese Journal of Geophysics, 2008, 51(3):894-900.(in Chinese)]

    Google Scholar

    [13] 杨卓, 马超. 基于BP神经网络方法的岩溶隧道突涌水风险预测[J]. 隧道建设, 2016, 36(11):1337-1342.[YANG Z, MA C. Risk prediction of Water inrush of karst tunnels based on BP neural network[J]. Tunnel Construction, 2016, 36(11):1337-1342.(in Chinese)]

    Google Scholar

    [14] 袁青, 陈培帅, 钟涵, 等. 基于优化FAHP-TOPSIS法的高压富水花岗岩断层涌水预测[J]. 隧道建设(中英文), 2019(5):766-774.[YUAN Q, CHEN P S, ZHONG H, et al. Water gushing prediction in high-pressure water-rich granite fault zone based on optimized FAHP-TOPSIS method[J]. Tunnel Construction, 2019(5):766-774.(in Chinese)]

    Google Scholar

    [15] 张凯, 陈寿根, 霍晓龙, 等. 岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4):89-96.[ZHANG K, CHEN S G, HUO X L, et al. Extension assessment model for the risk of water inflow in karst tunnels and its application[J]. Modern Tunnelling Technology,2019, 56(4):89-96.(in Chinese)]

    Google Scholar

    [16] 冯宝俊,刘敦文,褚夫蛟.基于PSO-SVM模型的隧道水砂突涌量预测研究[J].中国安全生产科学技术,2014,10(7):123-129.[FENG B J, LIU D W, CHU F J.Study on prediction of water and sand inrush quantity in tunnel based on PSO-SVM model[J]. Journal of Safety Science and Technology, 2014,10(7):123-129.(in Chinese)]

    Google Scholar

    [17] 李立民.可控源音频大地电磁法在秦岭输水隧洞断裂勘察中的应用[J].中国农村水利水电,2014(8):131-133.[LI L M. Application of controllable source audio-frequency magnetotelluric method in fracture survey of Qinling water conveyance tunnel[J]. China Rural Water and Hydropower, 2014(8):131-133.(in Chinese)]

    Google Scholar

    [18] 张毅, 李戟, 赵军德. CSAMT法在深埋隧洞探测中的应用[J],勘察科学技术2011(5):58-61.[ZHANG Y,LI J,ZHAN J D.Application on CSAMT method in deep buried tunnel detection[J]. Site Investigation Science and Technology,2015(5):58-61(in Chinese)]

    Google Scholar

    [19] 张举贤. 浅谈长大深埋隧道工程地质勘察中地质对物探的配合[J]. 铁道工程学报,2006, 23(3):17-20.[ZHANG J X. Comments on matching geology with physical exploration in engineering geological prospecting for large deep buried tunnel[J].Journal of Railway Engineering Society, 2006, 23(3):17-20.(in Chinese)]

    Google Scholar

    [20] 范剑. CSAMT法在铁路隧道勘察中的应用[J]. 西部探矿工程,2020, 32(2):184-187.[FAN J. Application of CSAMT method in railway tunnel investigation[J]. West-China Exploration Engineering, 2020, 32(2):184-187.(in Chinese)]

    Google Scholar

    [21] 刘高, 杨重存,谌文武,等.深埋长大隧道涌(突)水条件及影响因素分析[J].天津城市建设学院学报2002,8(3):160-164.[LIU G,YANG Z C, CHEN W W, et al. Conditions and influencing factors of occurrence of groundwater inflow and invasion into deep-buried tunnel[J]. Journal of Tianjin Institute of Urban Construction, 2002,8(3):160-164.(in Chinese)]

    Google Scholar

    [22] 王勐,许兆义,王连俊,等.圆梁山毛坝向斜段隧道涌突水灾害及对地下水的影响[J].中国安全科学学报,2004,14(5):6-10.[WANG M,XU Z Y,WANG L J,et al. Gushing water from Yuanliangshan tunnel in maoba syncline and its impact on surface water[J]. China Safety Science Journal, 2004, 14(5):6-10.(in Chinese)]

    Google Scholar

    [23] 任伟灿,王松,宋伟强. 大(埔)丰(顺)(五)华高速公路鸿图嶂特长隧道隧址区水库影响的水文地质专项研究报告[R].广州:广东省交通规划设计研究院股份有限公司, 2017.[REN W C, WANG S,SONG W Q. The special hydrogeological research report ofreservoir influence of tunnel zoneof Hongtuzhangextra-long tunnel of Dapu-Fengshun-Wuhuaexpressway[R].Guangzhou:Guangdong Communication Planning and Design Institute Co,Ltd,2017.(in Chinese)]

    Google Scholar

    [24] 吴祖松,侯秋萍,马君伟,等.富水隧道幕墙堵水技术研究[J].水文地质工程地质,2019,46(5):65-71.[WU Z S, HOU Q P, MA J W, et al.Research on water blocking technology of curtain walls in water-rich tunnels[J]. Hydrogeology & Engineering Geology, 2019, 46(5):65-71.(in Chinese)

    Google Scholar

    [25] 范威,王川,金晓文,等.吉莲高速公路钟家山隧道涌突水条件分析[J].水文地质工程地质,2015, 42(2):38-43.[FAN W, WANG C,JIN X W,et al. Inrush condition analysis of the Zhongjiashan tunnel in the Jilian Highway[J]. Hydrogeology & Engineering Geology, 2015, 42(2):38-43.(in Chinese)]

    Google Scholar

    [26] 张兴昶,罗延钟,高勤云. CSAMT技术在深埋隧道岩溶探测中的应用效果[J]. 工程地球物理学报,2004, 1(4):370-375.[ZHANG X C, LUO Y Z, GAO Q Y. Application of CSAMT t o exploring karst in the deep part of tunnel[J]. Chinese Journal of Engineering Geophysics, 2004, 1(4):370-375.(in Chinese)]

    Google Scholar

    [27] 李坚,邓宏科,张家德,等.可控源音频大地电磁勘探在大瑞铁路高黎贡山隧道地质选线中的应用[J].水文地质工程地质,2009,36(2):72-76.[LI J,DENG H K,ZHANG J D, et al. Application of geological routing about CSAMT Exploration in GaoligongMountaintunnel of Dali-Ruili Railway[J]. Hydrogeology & Engineering Geology, 2009, 36(2):72-76.(in Chinese)]

    Google Scholar

    [28] 郭文杰,祝迎华.大(埔)丰(顺)(五)华高速公路丰顺至五华段鸿图嶂隧道物探详勘可控源音频大地电磁法技术报告[R].北京:中国冶金地质总局地球物理勘查院,2019.[GUO W J, ZHU Y H. The technical report of CSCMT of physical exploration for Hongtuzhang tunnel in Fengshun to Wuhua section of Dapu-Fengshun-Wuhuaexpressway[R].Beijing:Geophysical Exploration Academyof China Metallurgical Geology Bureau,2019.(in Chinese)]

    Google Scholar

    [29] 夏沅谱,董鑫,熊自明,等.基于剪切破坏的深长隧道掌子面隔水岩层安全厚度的研究[J].水文地质工程地质,2018,45(5):57-66.[XIA Y P, DONG X, XIONG Z M, et al. A study of the safety thickness of water-resisting rock strata in a deep-buried and long tunnel based on shear failure[J]. Hydrogeology & Engineering Geology, 2018, 45(5):57-66.(in Chinese)]

    Google Scholar

    [30] 鲜国,石少帅,赵勇,等.强富水隧道下穿河段突涌水灾害综合防控方法研究与应用[J].隧道与地下工程灾害防治,2019,1(2):74-82.[XIAN G, SHI S S, ZHAO Y, et al. Research and application of comprehensive prevention and control method for water inrush in water enriched under-crossing river tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2):74-82.(in Chinese)]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1271) PDF downloads(57) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint