2020 Vol. 47, No. 5
Article Contents

ZHANG Chenchen, HUANG Chong, HE Yun, LIU Qingsheng, LI He, WU Chunsheng, LIU Gaohuan. 2020. An analysis of the space-time patterns of precipitation-shallow groundwater depth interactions in the Yellow River Delta. Hydrogeology & Engineering Geology, 47(5): 21-30. doi: 10.16030/j.cnki.issn.1000-3665.202002033
Citation: ZHANG Chenchen, HUANG Chong, HE Yun, LIU Qingsheng, LI He, WU Chunsheng, LIU Gaohuan. 2020. An analysis of the space-time patterns of precipitation-shallow groundwater depth interactions in the Yellow River Delta. Hydrogeology & Engineering Geology, 47(5): 21-30. doi: 10.16030/j.cnki.issn.1000-3665.202002033

An analysis of the space-time patterns of precipitation-shallow groundwater depth interactions in the Yellow River Delta

More Information
  • In order to study the spatial and temporal response and driving factors of groundwater depth to precipitation in the Yellow River Delta, based on the time series data of groundwater depth of 14 typical monitoring wells and precipitation of meteorological stations from 2006 to 2010, the Kendall's rank correlation, Cross-Wavelet and Wavelet Coherence methods are used to analyze the spatial and temporal response patterns of groundwater depth and precipitation. Based on the data of land use types, micro- geomorphic types and soil texture, the quantitative attribution of the relationship between precipitation and groundwater depth was also explored by using the geographical detectors method. The results show that (1) groundwater depth is negatively correlated with precipitation, and the spatial difference of their relationship is obvious. According to the effect of precipitation on groundwater depth, the relationship between groundwater depth and precipitation is divided into three spatial patterns in the study area: pattern 1 with τau ranging between -0.45 and -0.30, pattern 2 with τau between -0.30 and -0.15 and pattern 3 with τau between -0.15 and -0.01. (2) From pattern 1 to pattern 3, the temporal lag of groundwater depth to precipitation is becoming shorter, which is 178.36, 146.43, 35.51 d, respectively. In all patterns, the change of groundwater depth is very sensitive to heavy precipitation. (3) Land use types, soil texture and micro-geomorphic types have significant effects on the relationship between groundwater depth and precipitation. The contribution rates of interpretation are micro-geomorphic types (0.280 7) > land use types (0.244 1) > soil texture (0.163 8). There are synergistic enhancement effects among the driving factors. The synergistic enhancement effect of land use types and micro-geomorphic types is the greatest, which is 0.749 0. Different spatial and temporal patterns of groundwater depth and precipitation in the Yellow River Delta are revealed and a quantitative attribution is also made to them, which provides a scientific basis for the study of water cycle process, groundwater resource management and ecological protection in the Yellow River Delta.
  • 加载中
  • [1] 宋创业, 胡慧霞, 黄欢, 等. 黄河三角洲人工恢复芦苇湿地生态系统健康评价[J]. 生态学报, 2016, 36(9):2705-2714.[SONG C Y, HU H X, HUANG H, et al. Assessing the health of rehabilitated reed wetland ecosystem in the Yellow River Delta[J]. Acta Ecologica Sinica, 2016, 36(9):2705-2714.(in Chinese)]

    Google Scholar

    [2] 高茂生, 叶思源, 史贵军, 等. 潮汐作用下的滨海湿地浅层地下水动态变化[J]. 水文地质工程地质, 2010, 37(4):24-27.[GAO M S, YE S Y, SHI G J, et al. Oceanic tide-induced shallow groundwater regime fluctuations in coastal wetland[J]. Hydrogeology & Engineering Geology, 2010, 37(4):24-27.(in Chinese)]

    Google Scholar

    [3] 范晓梅, 刘高焕, 束龙仓, 等. 调水调沙对河口地区地下水动态的影响[J]. 人民黄河, 2009, 31(9):34-35.[FAN X M, LIU G H, SHU L C, et al. Influence of a regulated discharge regime of the Yellow River to dynamic condition of groundwater of estuary region[J]. Yellow River, 2009, 31(9):34-35.(in Chinese)]

    Google Scholar

    [4] 安乐生, 赵全升, 许颖. 黄河三角洲浅层地下水位动态特征及其成因[J]. 环境科学与技术, 2013, 36(9):51-56.[AN L S, ZHAO Q S, XU Y. Dynamic characteristics of the shallow groundwater table and its genesis in the Yellow River Delta[J].Environmental Science & Technology, 2013, 36(9):51-56.(in Chinese)]

    Google Scholar

    [5] 薛春汀, 叶思源, 高茂生, 等. 现代黄河三角洲沉积物沉积年代的确定[J]. 海洋学报, 2009, 31(1):117-124.[XUE C T, YE S Y, GAO M S, et al. Determination of depositional age in the Huanghe Delta in China[J]. Acta Oceanologica Sinica, 2009, 31(1):117-124.(in Chinese)]

    Google Scholar

    [6] GRINSTED A, MOORE J C, JEVREJEVA S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6):561-566.

    Google Scholar

    [7] MARAUN D, KURTHS J. Cross wavelet analysis:significance testing and pitfalls[J]. Nonlinear Processes in Geophysics, 2004, 11(4):505-514.

    Google Scholar

    [8] 祁晓凡, 杨丽芝, 韩晔, 等. 济南泉域地下水位动态及其对降水响应的交叉小波分析[J]. 地球科学进展, 2012, 27(9):969-978.[QI X F, YANG L Z, HAN Y, et al. Cross wavelet analysis of groundwater level regimes and precipitation groundwater level regime in Ji'nan spring region[J]. Advances in Earth Science, 2012, 27(9):969-978.(in Chinese)]

    Google Scholar

    [9] CHINARRO D, VILLARROEL J L, CUCHí J A. Wavelet analysis of fuenmayor karst spring, San julián de banzo, Huesca, Spain[J].Environmental Earth Sciences, 2012, 65(8):2231-2243.

    Google Scholar

    [10] YU H L, LIN Y C. Analysis of space-time non-stationary patterns of rainfall-groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods[J]. Journal of Hydrology, 2015, 525:585-597.

    Google Scholar

    [11] DUVERT C, JOURDE H, RAIBER M, et al. Correlation and spectral analyses to assess the response of a shallow aquifer to low and high frequency rainfall fluctuations[J]. Journal of Hydrology, 2015, 527:894-907.

    Google Scholar

    [12] 李胜男, 王根绪, 邓伟, 等. 黄河三角洲典型区域地下水动态分析[J]. 地理科学进展, 2008, 27(5):49-56.[LI S N, WANG G X, DENG W, et al. Variations of groundwater depth in Yellow River Delta in recent two decades[J]. Progress in Geography, 2008, 27(5):49-56.(in Chinese)]

    Google Scholar

    [13] 吴春生, 黄翀, 刘高焕, 等. 基于模糊层次分析法的黄河三角洲生态脆弱性评价[J]. 生态学报, 2018, 38(13):4584-4595.[WU C S, HUANG C, LIU G H, et al. Assessment of ecological vulnerability in the Yellow River Delta using the fuzzy analytic hierarchy process[J]. Acta Ecologica Sinica, 2018, 38(13):4584-4595.(in Chinese)]

    Google Scholar

    [14] 吕真真, 杨劲松, 刘广明, 等. 黄河三角洲土壤盐渍化与地下水特征关系研究[J]. 土壤学报, 2017, 54(6):1377-1385.[LYU Z Z, YANG J S, LIU G M, et al. Relationship between soil salinization and groundwater characteristics in the Yellow River Delta[J]. Acta Pedologica Sinica, 2017, 54(6):1377-1385.(in Chinese)]

    Google Scholar

    [15] 刘高焕, DROST H. 黄河三角洲可持续发展图集[M].北京:测绘出版社, 1997.[LIU G H, DROST H. Atlas of the Yellow River delta[M]. Beijing:The Publishing House of Surveying and Mapping Press, 1997.(in Chinese)]

    Google Scholar

    [16] 赵延茂, 宋朝枢. 黄河三角洲自然保护区科学考察集[M].北京:中国林业出版社, 1995.[ZHAO Y M, SONG C S. A collection of scientific investigations on the Yellow River Delta Nature Reserve[M]. Beijing:China Forestry Publishing House, 1995.(in Chinese)]

    Google Scholar

    [17] 张效龙, 孙永福, 刘敦武. 黄河三角洲地区地下水分析[J]. 海洋地质动态, 2005(6):26-28.[ZHANG X L, SUN Y F, LIU D W. Analysis of groundwater in the Yellow River Delta areas[J]. Marine Geology Frontiers, 2005(6):26-28.(in Chinese)]

    Google Scholar

    [18] YUE S, PILON P, PHINNEY B, et al. The influence of autocorrelation on the ability to detect trend in hydrological series[J]. Hydrological Processes,2010, 16(9):1807-1829.

    Google Scholar

    [19] LI F X, ZHANG S Y, CHEN D, et al. Inter-decadal variability of the East Asian summer monsoon and its impact on hydrologic variables in the Haihe river basin, China[J]. Journal of Resources and Ecology, 2017, 8(2):174-184.

    Google Scholar

    [20] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological society, 1998, 79(1):61-78.

    Google Scholar

    [21] WANG J, LI X, CHRISTAKOS G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127.

    Google Scholar

    [22] JU H, ZHANG Z, ZUO L J, et al. Driving forces and their interactions of built-up land expansion based on the geographical detector-a case study of Beijing, China[J]. International Journal of Geographical Information Science, 2016, 30(11):2188-2207.

    Google Scholar

    [23] QI P, ZHANG G X, XU Y, et al. Assessing the influence of precipitation on shallow groundwater table response using a combination of singular value decomposition and cross-wavelet approaches[J]. Water, 2018, 10(5):598.

    Google Scholar

    [24] 吕振豫, 刘姗姗, 秦天玲, 等. 土壤入渗研究进展及方向评述[J]. 中国农村水利水电, 2019(7):1-5.[LYU Z Y, LIU S S, QIN T L, et al. Comment on the progress and major direction of soil infiltration research[J]. China Rural Water and Hydropower, 2019(7):1-5.(in Chinese)]

    Google Scholar

    [25] YANG J, CHU X F. Quantification of the spatio-temporal variations in hydrologic connectivity of small-scale topographic surfaces under various rainfall conditions[J]. Journal of Hydrology, 2013, 505:65-77.

    Google Scholar

    [26] THOMPSON S E, KATUL G G, PORPORATO A. Role of microtopography in rainfall-runoff partitioning:An analysis using idealized geometry[J]. Water Resources Research, 2010, 46(7):58-72.

    Google Scholar

    [27] 刘承, 王玉宽, 傅斌, 等. 紫色土不同土地利用方式下降雨入渗试验研究[J]. 水土保持研究, 2009, 16(3):20-23.[LIU C, WANG Y K, FU B, et al. Rain infiltration experiment study under different land use types of purple soil[J]. Research of Soil and Water Conservation, 2009, 16(3):20-23.(in Chinese)]

    Google Scholar

    [28] 李毅, 邵明安. 人工草地覆盖条件下降雨入渗影响因素的实验研究[J]. 农业工程学报, 2007, 23(3):18-23.[LI Y, SHAO M A. Experimental study on influence factors of rainfall and infiltration under artificial grassland coverage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(3):18-23.(in Chinese)]

    Google Scholar

    [29] 宋献方, 王仕琴, 肖国强, 等. 华北平原地下水浅埋区土壤水分动态的时间序列分析[J]. 自然资源学报, 2011, 26(1):145-155.[SONG X F, WANG S Q, XIAO G Q, et al. Time series analysis of soil water dynamics in the shallow groundwater areas of North China pain[J]. Journal of Natural Resources,2011, 26(1):145-155.(in Chinese)]

    Google Scholar

    [30] 张晓茹, 牛俊杰. 不同土壤质地及同一质地水分入渗差异——以山西保德县、岚县、榆次区为例[J]. 山东林业科技, 2017, 47(4):20-24.[ZHANG X R, NIU J J. Difference of soil texture and water infiltration of the same quality——A case study of Baode, Lanxain,and Yuci in Shanxi province[J]. Journal of Shandong Forestry Science and Technology, 2017, 47(4):20-24.(in Chinese)]

    Google Scholar

    [31] 江峰. 潮汐作用下潜水含水层溶质运移规律研究——以福建古雷半岛为例[D]. 武汉:中国地质大学, 2015.[JIANG F. Study on solute transport in phreatic aquifer under tidal action——A case study of Fujian Gulei Peninsula[D]. Wuhan:China University of Geosciences, 2015.(in Chinese)]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(533) PDF downloads(71) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint