2025 Vol. 41, No. 3
Article Contents

LI Jing, CUI Chuanzhi, YU Yongbo, LI Zongyang, ZHANG Chuanbao, ZHANG Dong. Molecular simulation of competitive adsorption of CO2 and short-chain alkanes under water containing conditions in tight oil reservoirs[J]. Marine Geology Frontiers, 2025, 41(3): 78-88. doi: 10.16028/j.1009-2722.2024.236
Citation: LI Jing, CUI Chuanzhi, YU Yongbo, LI Zongyang, ZHANG Chuanbao, ZHANG Dong. Molecular simulation of competitive adsorption of CO2 and short-chain alkanes under water containing conditions in tight oil reservoirs[J]. Marine Geology Frontiers, 2025, 41(3): 78-88. doi: 10.16028/j.1009-2722.2024.236

Molecular simulation of competitive adsorption of CO2 and short-chain alkanes under water containing conditions in tight oil reservoirs

More Information
  • Tight reservoirs have low permeability, small porosity, and pervasive micro-nano pores, so water flooding has poor development effects. The use of CCUS-EOR (Carbon Capture, Utilization, and Storage-Enhanced Oil Recovery) technology can realize the geological sequestration of CO2 in the reservoir while improving the crude oil recovery efficiency. Currently, research on CO2 sequestration mechanisms focuses mainly on saline aquifer sequestration, with less emphasis on adsorption and sequestration during CO2 flooding in tight oil reservoirs under water containing conditions. To address the above problems, we established a pore wall model for tight reservoirs using hydroxylated quartz cells based on molecular simulation methods, in which the fluid component models of CO2, crude oil short-chain alkanes, and water were contained; and investigated the competitive adsorption characteristics of CO2 and crude oil short-chain alkanes under water containing conditions. Results show that under water containing conditions, the adsorption isotherms of each component during the competitive adsorption of CO2 and CH4, CO2 and C2H6 were in accordance with the class I adsorption isotherm, and the absolute adsorption amount, excess adsorption amount, and heat adsorption of CO2 were larger than those of CH4 and C2H6. The adsorption of CO2 and crude oil short-chain alkanes on the quartz wall was physical. Under simulation conditions, the number of water molecules had a significant impact on the adsorption amount of CO2 and a relatively small impact on the adsorption amount of CH4. The increase in the proportion of CO2 increased CO2 adsorption amount but decreased CH4 adsorption amount. The increase of temperature reduced the absolute adsorption amount of CO2 and CH4. The increase of pore size increased the absolute and excess adsorption amounts of both CO2 and CH4. The type of wall mineral showed a significant impact on the adsorption capacity of CO2 and CH4.

  • 加载中
  • [1] QIN J Z,ZHONG Q H,TANG Y,et al. CO2 storage potential assessment of offshore saline aquifers in China[J]. Fuel,2023,341:127681. doi: 10.1016/j.fuel.2023.127681

    CrossRef Google Scholar

    [2] LIU Y L,RUI Z H. A storage-driven CO2 EOR for a net-zero emission target[J]. Engineering,2022,18:79-87. doi: 10.1016/j.eng.2022.02.010

    CrossRef Google Scholar

    [3] 黄苏卫,刘峰,戚家振. 西湖凹陷Y构造花港组致密砂岩成藏特征[J]. 海洋地质前沿,2023,39(3):71-80.

    Google Scholar

    HUANG S W,LIU F,QI J Z. Tight sandstone accumulation characteristics of Huagang Formation in Y Structure of Xihu Sag[J]. Marine Geology Frontiers,2023,39(3):71-80.

    Google Scholar

    [4] 肖晓光,秦兰芝,张武,等. 西湖凹陷西斜坡平湖组储层特征及致密化过程分析[J]. 海洋地质前沿,2023,39(4):34-45.

    Google Scholar

    XIAO X G,QIN L Z,ZHANG W,et al. Reservoir characteristics and densification process of Pinghu Formation in western slope of Xihu Sag[J]. Marine Geology Frontiers,2023,39(4):34-45.

    Google Scholar

    [5] 张岩,秦德文. 东海古近系致密碎屑岩“甜点”地震预测方法及应用[J]. 海洋地质前沿,2023,39(5):93-100.

    Google Scholar

    ZHANG Y,QIN D W. Method and application of sweet spot seismic prediction of the Paleogene low-porosity low-permeability clastic rock in the East China Sea Basin[J]. Marine Geology Frontiers,2023,39(5):93-100.

    Google Scholar

    [6] 杨勇. 中国碳捕集、驱油与封存技术进展及发展方向[J]. 石油学报,2024,45(1):325-338. doi: 10.7623/syxb202401019

    CrossRef Google Scholar

    YANG Y. Technology progress and development direction of carbon capture,oil-flooding and storage in China[J]. Acta Petrolei Sinica,2024,45(1):325-338. doi: 10.7623/syxb202401019

    CrossRef Google Scholar

    [7] 王峰,黎政权,张德平. 吉林油田CCUS-EOR技术攻关与实践新进展[J]. 天然气工业,2024,44(4):76-82. doi: 10.3787/j.issn.1000-0976.2024.04.008

    CrossRef Google Scholar

    WANG F,LI Z Q,ZHANG D P. New research and practice progresses of CCUS-EOR technology in Jilin Oilfield[J]. Natural Gas Industry,2024,44(4):76-82. doi: 10.3787/j.issn.1000-0976.2024.04.008

    CrossRef Google Scholar

    [8] 刘斌,孙久强,崔洋洋,等. 深部咸水层中CO2埋存机理及埋存能力计算[J]. 新型工业化,2015,5(3):47-53. doi: 10.3969/j.issn.2095-6649.2015.03.07

    CrossRef Google Scholar

    LIU B,SUN J Q,CUI Y Y,et al. CO2 sequestration mechanism and capacity calculation in deep saline aquifer[J]. The Journal of New Industrialization,2015,5(3):47-53. doi: 10.3969/j.issn.2095-6649.2015.03.07

    CrossRef Google Scholar

    [9] 苏大鹏,贺静,闫琢玉,等. 西沙石岛西科1井深层致密白云岩岩相学特征再研究[J]. 海洋地质前沿,2021,37(6):55-63.

    Google Scholar

    SU D P,HE J,YAN Z Y,et al. Restudy on petrographic characteristics of deep tight dolomite in Well Xike 1 of Shidao,Xisha Islands[J]. Marine Geology Frontiers,2021,37(6):55-63.

    Google Scholar

    [10] 董刚,刘新宇,李绪深,等. 南海西科1井致密白云岩特征及成岩环境[J]. 海洋地质前沿,2021,37(6):49-54.

    Google Scholar

    DONG G,LIU X Y,LI X S,et al. Characteristics and diagenetic environment of tight dolostone in Well Xike 1,South China Sea[J]. Marine Geology Frontiers,2021,37(6):49-54.

    Google Scholar

    [11] 唐明云,张海路,段三壮,等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J]. 煤炭科学技术,2021,49(5):182-189.

    Google Scholar

    TANG M Y,ZHANG H L,DUAN S Z,et al. Study on effect of temperature on methane adsorption and desorption in coal based on Langmuir model[J]. Coal Science and Technology,2021,49(5):182-189.

    Google Scholar

    [12] 李晶辉,韩鑫,黄思婧,等. 页岩干酪根吸附规律的分子模拟研究[J]. 油气藏评价与开发,2022,12(3):455-461.

    Google Scholar

    LI J H,HAN X,HUANG S J,et al. Molecular simulation of adsorption law for shale kerogen[J]. Petroleum Reservoir Evaluation and Development,2022,12(3):455-461.

    Google Scholar

    [13] 邓小鹏,相建华. 东曲矿8号煤CO2和CH4竞争吸附特性分子模拟研究[J]. 煤矿安全,2024,55(3):18-24.

    Google Scholar

    DENG X P,XIANG J H. Molecular simulation study on competitive adsorption characteristics of CO2 and CH4 for 8# coal in Dongqu Mine[J]. Safety in Coal Mines,2024,55(3):18-24.

    Google Scholar

    [14] 王海哲. 页岩纳米孔隙中CO2和CH4吸附扩散分子模拟研究[J]. 能源与环保,2024,46(7):156-160.

    Google Scholar

    WANG H Z. Molecular simulation study on adsorption and diffusion molecular of CO2 and CH4 in shale nanopores[J]. China Energy and Environmental Protection,2024,46(7):156-160.

    Google Scholar

    [15] 李田田,王淑彦,邵宝力,等. CH4/CO2在SiO2孔隙中的吸附和扩散性能研究[J]. 当代化工,2024,53(5):1035-1039. doi: 10.3969/j.issn.1671-0460.2024.05.007

    CrossRef Google Scholar

    LI T T,WANG S Y,SHAO B L,et al. Adsorption and diffusion properties of CH4/CO2 in SiO2 pores[J]. Contemporary Chemical Industry,2024,53(5):1035-1039. doi: 10.3969/j.issn.1671-0460.2024.05.007

    CrossRef Google Scholar

    [16] 方暖,陈泽琴,刘晓强,等. 分子模拟CH4和CO2在方解石-白云石岩层的吸附机理[J]. 长江大学学报(自然科学版),2024,21(3):95-104.

    Google Scholar

    FANG N,CHEN Z Q,LIU X Q,et al. Molecular simulation of the adsorption mechanisms of CH4 and CO2 in calcite-dolomite nanopore[J]. Journal of Yangtze University (Natural Science Edition),2024,21(3):95-104.

    Google Scholar

    [17] 任旭,王杰,董海海,等. 考虑组分差异的致密油二氧化碳吞吐效果分子模拟[J]. 断块油气田,2022,29(2):229-233.

    Google Scholar

    REN X,WANG J,DONG H H,et al. Molecular simulation of CO2 huff and puff effects in tight oil considering component differences[J]. Fault-Block Oil & Gas Field,2022,29(2):229-233.

    Google Scholar

    [18] 汪周华,赵建飞,白银,等. 不同润湿性修饰石英吸附甲烷的模拟研究[J]. 西南石油大学学报(自然科学版),2019,41(6):28-34.

    Google Scholar

    WANG Z H,ZHAO J F,BAI Y,et al. Simulation of methane adsorption of quartz with different wettability[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2019,41(6):28-34.

    Google Scholar

    [19] 张明航. 伊利石及方解石中CO2-烷烃吸附扩散的分子模拟研究[D]. 成都:西南石油大学,2017.

    Google Scholar

    ZHANG M H. The molecular simulation study on adsorption and diffusion in the process of alkanes displacement with carbon dioxide injection on illite and calcite[D]. Chengdu:Southwest Petroleum University,2017.

    Google Scholar

    [20] 刘洁翔,董梅,秦张峰,等. C5烷烃分子在AlPO4-5分子筛中吸附的分子模拟研究[J]. 燃料化学学报,2004,32(5):569-572.

    Google Scholar

    LIU J X,DONG M,QIN Z F,et al. Molecular simulation of C5 paraffins sorption in AlPO4-5 molecular sieves[J]. Journal of Fuel Chemistry and Technology,2004,32(5):569-572.

    Google Scholar

    [21] 吴双,汤达祯,李松,等. 温度/压力对甲烷超临界吸附能量参数的影响机制[J]. 煤炭科学技术,2019,47(9):60-67.

    Google Scholar

    WU S,TANG D Z,LI S,et al. Effect of temperature and pressure on energy parameters of methane supercritical adsorption[J]. Coal Science and Technology,2019,47(9):60-67.

    Google Scholar

    [22] LIU S,WANG M H,WEI S X,et al. Enhanced CO2 capture in partially interpenetrated MOFs:synergistic effects from functional group,pore size,and steric-hindrance[J]. Journal of Colloid and Interface Science,2023,650:1361-1370. doi: 10.1016/j.jcis.2023.07.058

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(20)

Tables(12)

Article Metrics

Article views(98) PDF downloads(45) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint