2025 Vol. 41, No. 3
Article Contents

QU Xiyu, WEN Jingkai, YUAN Yong, SHI Kaiteng, CHEN Tiexin. Carbon sequestration research of synthesizing dawsonite using CO2 under different experimental conditions[J]. Marine Geology Frontiers, 2025, 41(3): 89-98. doi: 10.16028/j.1009-2722.2024.273
Citation: QU Xiyu, WEN Jingkai, YUAN Yong, SHI Kaiteng, CHEN Tiexin. Carbon sequestration research of synthesizing dawsonite using CO2 under different experimental conditions[J]. Marine Geology Frontiers, 2025, 41(3): 89-98. doi: 10.16028/j.1009-2722.2024.273

Carbon sequestration research of synthesizing dawsonite using CO2 under different experimental conditions

More Information
  • Mineral trapping of CO2 is the most durable and stable form of geological storage. As a natural CO2 tracer mineral, the formation of dawsonite is closely related to CO2 infusion, and it also be an important carbon fixation mineral for CO2 geological storage. The condition of massive and stable presence of dawsonite in geological background is a key issue that constrains the CO2 mineralization capture, and is also an important influencing factor in the search for CO2 geological burial sites. To explore the conditions for the rapid synthesis of dawsonite with CO2, we conducted comparative experiments for three main influencing factors of temperature (100/120/140/160/180/200 ℃), pH (8.5/9/9.5/10/10.5), and reaction time (6/12 h). Based on scanning electron microscopy, X-ray diffraction analysis was conducted to clarify the optimal conditions for the synthesis of dawsonite. The experiments suggested that in the range of pH 8.5–10.5 and temperature 100–180 ℃, the products were all pure dawsonite, and the synthesis amount showed a trend of increasing and then decreasing with the increase of pH and temperature. At 200 ℃, the crystallinity of dawsonite decreased and the content of pseudo boehmite increased. The prolongation of reaction time did not have an obvious promotion effect on the quality of the products, and the prolongation of reaction time at 200 ℃ would accelerate the dissolution of dawsonite instead. Overall, 140 ℃ and pH 9.5 are the best conditions for the synthesis of dawsonite from carbon dioxide and probably the ideal conditions for geological sequestration of carbon dioxide.

  • 加载中
  • [1] DANIELS J. Accelerating CCS 2023-2027:five years plan[R]. Canberra:Global Carbon Capture and Storage Institute,2022.

    Google Scholar

    [2] ZERAI B,SAYLOR B Z,MATISOFF G. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone,Ohio[J]. Applied Geochemistry,2006,21(2):223-240. doi: 10.1016/j.apgeochem.2005.11.002

    CrossRef Google Scholar

    [3] BENSON S M,COLE D R. CO2 sequestration in deep sedimentary formations[J]. Elements,2008,4(5):325-331. doi: 10.2113/gselements.4.5.325

    CrossRef Google Scholar

    [4] Intergovernmental Panel on Climate Change Global warming of 1.5 ℃[M]. Cambridge:Cambridge University Press,2022.

    Google Scholar

    [5] QIU Y,LAMERS P,DAIOGLOU V,et al. Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100[J]. Nature Communications,2022,13(1):3635. doi: 10.1038/s41467-022-31146-1

    CrossRef Google Scholar

    [6] SHU D Y,DEUTZ S,WINTER B A,et al. The role of carbon capture and storage to achieve net-zero energy systems:trade-offs between economics and the environment[J]. Renewable and Sustainable Energy Reviews,2023,178:113246. doi: 10.1016/j.rser.2023.113246

    CrossRef Google Scholar

    [7] International Energy Agency. Zero by 2050:a roadmap for global energy sector[R]. Paris:International Energy Agency,2011.

    Google Scholar

    [8] LIU S Q,LIU T,ZHENG S J,et al. Evaluation of carbon dioxide geological sequestration potential in coal mining area[J]. International Journal of Greenhouse Gas Control,2023,122:103814. doi: 10.1016/j.ijggc.2022.103814

    CrossRef Google Scholar

    [9] LOHUIS J O. Carbon dioxide disposal and sustainable development in the Netherlands[J]. Energy Conversion and Management,1993,34(9/11):815-821. doi: 10.1016/0196-8904(93)90024-5

    CrossRef Google Scholar

    [10] BACHU S,GUNTER W D,PERKINS E H. Aquifer disposal of CO2:hydrodynamic and mineral trapping[J]. Energy Conversion and Management,1994,35(4):269-279. doi: 10.1016/0196-8904(94)90060-4

    CrossRef Google Scholar

    [11] WARD C R. Analysis and significance of mineral matter in coal seams[J]. International Journal of Coal Geology,2002,50(1/4):135-168.

    Google Scholar

    [12] ALCALDE J,FLUDE S,WILKINSON M,et al. Estimating geological CO2 storage security to deliver on climate mitigation[J]. Nature Communications,2018,9(1):2201. doi: 10.1038/s41467-018-04423-1

    CrossRef Google Scholar

    [13] LANE J,GREIG C,GARNETT A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions[J]. Nature Climate Change,2021,11(11):925-936. doi: 10.1038/s41558-021-01175-7

    CrossRef Google Scholar

    [14] ALSHAMMARI A,LAKSHMI V,BRANTLEY D,et al. Simulation of carbon dioxide mineralization and its effect on fault leakage rates in the South Georgia rift basin,southeastern US[J]. Heliyon,2022,8(6):e09635. doi: 10.1016/j.heliyon.2022.e09635

    CrossRef Google Scholar

    [15] HEPBURN C,ADLEN E,BEDDINGTON J,et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature,2019,575(7781):87-97. doi: 10.1038/s41586-019-1681-6

    CrossRef Google Scholar

    [16] SNÆBJÖRNSDÓTTIR S Ó,SIGFÚSSON B,MARIENI C,et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment,2020,1(2):90-102.

    Google Scholar

    [17] MADHAV D,COPPITTERS T,JI Y,et al. Amino acid promoted single-step carbon dioxide capture and mineralization integrated with polymer-mediated crystallization of carbonates[J]. Journal of Cleaner Production,2023,415:137845. doi: 10.1016/j.jclepro.2023.137845

    CrossRef Google Scholar

    [18] ZHANG G R,LU P,HUANG Y,et al. Investigation of mineral trapping processes based on coherent front propagation theory:a dawsonite-rich natural CO2 reservoir as an example[J]. International Journal of Greenhouse Gas Control,2021,110:103400. doi: 10.1016/j.ijggc.2021.103400

    CrossRef Google Scholar

    [19] XU T,APPS J A,PRUESS K. Numerical simulation to study mineral trapping for CO2 disposal in deep aquifer[J]. Applied Geochemistry,2004,19(6):917-936. doi: 10.1016/j.apgeochem.2003.11.003

    CrossRef Google Scholar

    [20] XU T,APPS J A,PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology,2005,217(3/4):295-318.

    Google Scholar

    [21] 刘娜. 砂岩对CO2的矿物捕获能力:来自松辽盆地南部红岗地区含片钠铝石砂岩的约束[D]. 长春:吉林大学,2011.

    Google Scholar

    LIU N. Mineral trapping capacity estimation of CO2 in sandstones:constraints from the dawsonite-bearing sandstone in Honggang,southern part of Songliao Basin[D]. Changchun:Jilin University,2011.

    Google Scholar

    [22] 周冰. 火山碎屑岩的CO2 矿物圈闭潜力研究:天然类似物与实验室实验约束[D].长春:吉林大学,2015.

    Google Scholar

    ZHOU B. The potential capacity of CO2 mineral trapping in pyroclastic rock:constraints from natural analogue and experiments[D]. Changchun:Jilin University,2015.

    Google Scholar

    [23] QU X L,LIU N L. Geology record of mantle-derived magmatogenetic CO2 gas in the northeastern China[J]. Acta Petrolei Sinica,2010,31(1):61-67.

    Google Scholar

    [24] QU X Y,CHEN X,YU M,et al. Mineral dating of mantle-derived CO2 charging and its application in the southern Songliao Basin,China[J]. Applied Geochemistry,2016,68:19-28. doi: 10.1016/j.apgeochem.2016.03.005

    CrossRef Google Scholar

    [25] AHMAD A,WHEAT T A,CANADAY J D,et al. Processing and characterization of Na and (Na-K) beta-beta “alumina ceramics”[J]. Solid State Ionics,1994,68(3/4):233-241. doi: 10.1016/0167-2738(94)90181-3

    CrossRef Google Scholar

    [26] 范蕾蕾,叶俊伟,李鑫,等. NaAl(OH)2CO3阻燃晶须的水热合成及其阻燃性能[J]. 功能材料,2009,40(9):1580-1583.

    Google Scholar

    FAN L L,YE J W,LI X,et al. Hydrothermal synthesis and flame-retardant properties of NaAl(OH)2CO3 whiskers[J]. Journal of Functional Materials,2009,40(9):1580-1583.

    Google Scholar

    [27] STOICA G,ABELLÓ S O N,PÉREZ-RAMÍREZ J. Na-dawsonite derived aluminates for DMC production by transesterification of ethylene carbonate[J]. Applied Catalysis A:General,2009,365(2):252-260. doi: 10.1016/j.apcata.2009.06.022

    CrossRef Google Scholar

    [28] JUN C,SONG Y W,SHAN D Y,et al. Properties of dawsonite conversion film on AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2011,21(4):936-942. doi: 10.1016/S1003-6326(11)60804-2

    CrossRef Google Scholar

    [29] LI X B,LIU N,ZHOU Q S,et al. Dawsonite preparation by deep carbonation decomposition of spent liquor from carbonation of sodium aluminate solutions[J]. Journal of Central South University (Science and Technology),2016,47(1):20-25.

    Google Scholar

    [30] HERNANDEZ M J,ULIBARRI M A,CORNEJO J,et al. Thermal stability of aluminium hydroxycarbonates with monovalent cations[J]. Thermochimica Acta,1985,94(2):257-266. doi: 10.1016/0040-6031(85)85269-2

    CrossRef Google Scholar

    [31] KEENAN F J,HOWATSON J,SMITH J W. Thermal behavior of dawsonite[R]. Laramie:Laramie Energy Technology Center,1980.

    Google Scholar

    [32] STOICA G,PÉREZ-RAMÍREZ J. Stability and inter-conversion of synthetic dawsonites in aqueous media[J]. Geochimica et Cosmochimica Acta,2010,74(24):7048-7058. doi: 10.1016/j.gca.2010.09.013

    CrossRef Google Scholar

    [33] PITSCH I,GEßNER W,BRÜCKNER A,et al. Synthesis and characterization of Fe2O3 containing aluminas by thermal decomposition of modified ammonium dawsonite[J]. Journal of Materials Chemistry,2001,11(10):2498-2503. doi: 10.1039/b101466h

    CrossRef Google Scholar

    [34] WU H T,SONG B,SUN Y,et al. Data mining technology in novel method for synthesis of sodium aluminium carbonate hydroxide[J]. CIESC Journal,2006,57(5):1236-1241.

    Google Scholar

    [35] 姜求宇,吴文伟,廖森,等. 室温固相合成纳米碱式碳酸钠铝[J]. 应用化工,2005,34(2):99-101.

    Google Scholar

    JIANG Q Y,WU W W,LIAO S,et al. Preparation of nano basic sodium aluminum carbonate by room temperature solid state reaction[J]. Applied Chemical Industry,2005,34(2):99-101.

    Google Scholar

    [36] BÉNÉZETH P,PALMER D A,ANOVITZ L M,et al. Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements:implications for mineral trapping of CO2[J]. Geochimica et Cosmochimica Acta,2007,71(18):4438-4455. doi: 10.1016/j.gca.2007.07.003

    CrossRef Google Scholar

    [37] YANG Q H,LI D D,ZHUANG F C,et al. Transformation mechanism in preparation of pseudo-boehmite by NaAlO2 -CO2 method[J]. Chinese Journal of Catalysis,1997,18(6):478-482.

    Google Scholar

    [38] 曲希玉,李倩,闫振,等. 固碳矿物—片钠铝石的最佳水热合成条件[J]. 中国石油大学学报(自然科学版),2023,47(3):27-34.

    Google Scholar

    QU X Y,LI Q,YAN Z,et al. Optimum hydrothermal synthesis conditions of carbon fixing mineral-dawsonite[J]. Journal of China University of Petroleum (Edition of Natural Science),2023,47(3):27-34.

    Google Scholar

    [39] 范泓澈,黄志龙,袁剑,等. 高温高压条件下甲烷和二氧化碳溶解度试验[J]. 中国石油大学学报(自然科学版),2011,35(2):6-11,19.

    Google Scholar

    FAN H C,HUANG Z L,YUAN J,et al. Experiment on solubility of CH4 and CO2 at high temperature and high pressure[J]. Journal of China University of Petroleum (Edition of Natural Science),2011,35(2):6-11,19.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(53) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint